Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1998, Volume 117, Number 2, Pages 206–220
DOI: https://doi.org/10.4213/tmf927
(Mi tmf927)
 

Boundary conditions and confinement in the gauge field theory at finite temperature

N. A. Sveshnikov, É. G. Timoshenkoa

a University College Dublin
References:
Abstract: A Hamiltonian formulation of a non-Abelian gauge theory confined in a finite domain is constructed in a generalized three-dimensional Fock–Schwinger gauge in the presence of surface terms. The dependence of the partition function on the boundary value of the longitudinal electric-field component, which because of the Gauss law, coincides with the electric-field flow through an infinitesimal boundary-surface element in this gauge, is investigated. This dependence is related to the confinement–deconfinement phase transition. In the confinement phase, the chromoelectric current through any boundary element is zero, because all observable quantities are singlet w.r.t. the remaining gauge-transformation group, i. e. color objects are unobservable at spatial infinity. In addition to the non-Abelian theory, a simpler example of quantum electrodynamics with an external-charge density in a spherical domain is considered in which the effective partition function is exactly calculable.
Received: 14.04.1998
English version:
Theoretical and Mathematical Physics, 1998, Volume 117, Issue 2, Pages 1274–1285
DOI: https://doi.org/10.1007/BF02557167
Bibliographic databases:
Language: Russian
Citation: N. A. Sveshnikov, É. G. Timoshenko, “Boundary conditions and confinement in the gauge field theory at finite temperature”, TMF, 117:2 (1998), 206–220; Theoret. and Math. Phys., 117:2 (1998), 1274–1285
Citation in format AMSBIB
\Bibitem{SveTim98}
\by N.~A.~Sveshnikov, \'E.~G.~Timoshenko
\paper Boundary conditions and confinement in the gauge field theory at finite temperature
\jour TMF
\yr 1998
\vol 117
\issue 2
\pages 206--220
\mathnet{http://mi.mathnet.ru/tmf927}
\crossref{https://doi.org/10.4213/tmf927}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1693950}
\zmath{https://zbmath.org/?q=an:0991.81071}
\transl
\jour Theoret. and Math. Phys.
\yr 1998
\vol 117
\issue 2
\pages 1274--1285
\crossref{https://doi.org/10.1007/BF02557167}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000079019400004}
Linking options:
  • https://www.mathnet.ru/eng/tmf927
  • https://doi.org/10.4213/tmf927
  • https://www.mathnet.ru/eng/tmf/v117/i2/p206
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:292
    Full-text PDF :191
    References:49
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024