Abstract:
We show that both rigid and nonrigid dipoles can be trapped by an uniform external magnetic field in classical mechanics. The trapped states of the dipole present a nontrivial example of classical bound states embedded in a continuum (BSEC) that can be treated as analogues of quantum BSECs. For example, the classical motion of the dipole is confined to a finite region in space although there are no classical turning points. We also examine the quantum motion of the dipole in a magnetic field and show that for the most natural choices of the parameters, no quantum BSEC solutions exist. The possibilities of experimental investigations of BSECs are discussed.
Citation:
D. L. Pursey, N. A. Sveshnikov, A. M. Shirokov, “Electric dipole in a magnetic field: Bound states without classical turning points”, TMF, 117:2 (1998), 189–205; Theoret. and Math. Phys., 117:2 (1998), 1262–1273
\Bibitem{PurSveShi98}
\by D.~L.~Pursey, N.~A.~Sveshnikov, A.~M.~Shirokov
\paper Electric dipole in a~magnetic field: Bound states without classical turning points
\jour TMF
\yr 1998
\vol 117
\issue 2
\pages 189--205
\mathnet{http://mi.mathnet.ru/tmf926}
\crossref{https://doi.org/10.4213/tmf926}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1693954}
\zmath{https://zbmath.org/?q=an:0977.78022}
\transl
\jour Theoret. and Math. Phys.
\yr 1998
\vol 117
\issue 2
\pages 1262--1273
\crossref{https://doi.org/10.1007/BF02557166}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000079019400003}
Linking options:
https://www.mathnet.ru/eng/tmf926
https://doi.org/10.4213/tmf926
https://www.mathnet.ru/eng/tmf/v117/i2/p189
This publication is cited in the following 9 articles:
Przybylska M., Maciejewski A.J., Yaremko Yu., “Electromagnetic Trap For Polar Particles”, New J. Phys., 22:10 (2020), 103047
Guo Sh., Peng Yu., Han X., Li J., “Frequency Dependence of Dielectric Characteristics of Seawater Ionic Solution Under Static Magnetic Field”, Int. J. Mod. Phys. B, 31:23 (2017), 1750169
del Pino L.A., Curilef S., “Small oscillations of two interacting particles in a magnetic field”, Eur. J. Phys., 37:6 (2016), 065006
Han X., Peng Yu., Ma Zh., “Effect of magnetic field on optical features of water and KCl solutions”, Optik, 127:16 (2016), 6371–6376
L A del Pino, B Atenas, S Curilef, “Small oscillations of a 3D electric dipole in the presence of a uniform magnetic field”, J. Phys.: Conf. Ser., 720 (2016), 012055
Atenas B., del Pino L.A., Curilef S., “Classical States of An Electric Dipole in An External Magnetic Field: Complete Solution For the Center of Mass and Trapped States”, Ann. Phys., 350 (2014), 605–614
Troncoso, P, “Bound and trapped classical states of an electric dipole in a magnetic field”, European Journal of Physics, 27:6 (2006), 1315
Stichel, PC, “A new type of conformal dynamics”, Annals of Physics, 310:1 (2004), 158
Shirokov, AM, “Quantum bound states embedded in a continuum and their classical analogs”, Physics of Atomic Nuclei, 65:6 (2002), 1100