Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 191, Number 3, Pages 518–534
DOI: https://doi.org/10.4213/tmf9223
(Mi tmf9223)
 

Critical behavior of a monoaxial chiral helimagnet

A. S. Ovchinnikova, I. G. Bostrema, V. E. Sinitsyna, J. Kishineb

a Institute of Natural Sciences, Yeltsin Ural Federal University, Ekaterinburg, Russia
b Division of Natural and Environmental Sciences, The Open University of Japan, Chiba, Japan
References:
Abstract: We analyze the critical behavior of magnetically ordered phases appearing in a monoaxial chiral helimagnet in a weak external magnetic field. Using the formalism of the equations of state in the critical region, we determine the temperature dependence of the order parameters for the conical phase and the soliton-lattice phase. We calculated the critical exponents and show that they coincide with those in the three-dimensional Heisenberg model.
Keywords: Dzyaloshinskii–Moriya interaction, phase transition, critical index.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.000
1437
2725
МК-6230.2016.2
Japan Society for the Promotion of Science 25287087
25220803
Russian Foundation for Basic Research 17-52-500131
This research was supported by the Japan Society for the Promotion of Science, KAKENHI Program (Grant Nos. 25287087 and 25220803), the Russian Government (Document 211, Contract No. 02.A03.21.0006), the Russian Ministry of Education and Science (Project Nos. 1437 and 2725), and the Russian Foundation for Basic Research (Grant No. 17-52-500131). The research of Vl. E. Sinitsyn is supported by the Support Program for Young Scientists with a Candidate's Degree (Grant No. MK-6230.2016.2).
Received: 10.05.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 191, Issue 3, Pages 924–938
DOI: https://doi.org/10.1134/S0040577917060101
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. S. Ovchinnikov, I. G. Bostrem, V. E. Sinitsyn, J. Kishine, “Critical behavior of a monoaxial chiral helimagnet”, TMF, 191:3 (2017), 518–534; Theoret. and Math. Phys., 191:3 (2017), 924–938
Citation in format AMSBIB
\Bibitem{OvcBosSin17}
\by A.~S.~Ovchinnikov, I.~G.~Bostrem, V.~E.~Sinitsyn, J.~Kishine
\paper Critical behavior of a monoaxial chiral helimagnet
\jour TMF
\yr 2017
\vol 191
\issue 3
\pages 518--534
\mathnet{http://mi.mathnet.ru/tmf9223}
\crossref{https://doi.org/10.4213/tmf9223}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3662475}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...191..924O}
\elib{https://elibrary.ru/item.asp?id=29255342}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 191
\issue 3
\pages 924--938
\crossref{https://doi.org/10.1134/S0040577917060101}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404743900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021642481}
Linking options:
  • https://www.mathnet.ru/eng/tmf9223
  • https://doi.org/10.4213/tmf9223
  • https://www.mathnet.ru/eng/tmf/v191/i3/p518
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1590
    Full-text PDF :141
    References:61
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024