Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 191, Number 3, Pages 503–517
DOI: https://doi.org/10.4213/tmf9215
(Mi tmf9215)
 

This article is cited in 10 scientific papers (total in 10 papers)

Four competing interactions for models with an uncountable set of spin values on a Cayley tree

U. A. Rozikova, F. Kh. Khaidarovb

a Institute of Mathematics and Information Technologies, Tashkent, Uzbekistan
b National University of Uzbekistan, Tashkent, Uzbekistan
References:
Abstract: We consider models with four competing interactions (external field, nearest neighbor, second neighbor, and three neighbors) and an uncountable set [0,1] of spin values on the Cayley tree of order two. We reduce the problem of describing the splitting Gibbs measures of the model to the problem of analyzing solutions of a nonlinear integral equation and study some particular cases for Ising and Potts models. We also show that periodic Gibbs measures for the given models either are translation invariant or have the period two. We present examples where periodic Gibbs measures with the period two are not unique.
Keywords: Cayley tree, competing interaction, configuration, Gibbs measure, Ising model, Potts model, periodic Gibbs measure, phase transition.
Received: 23.04.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 191, Issue 3, Pages 910–923
DOI: https://doi.org/10.1134/S0040577917060095
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: U. A. Rozikov, F. Kh. Khaidarov, “Four competing interactions for models with an uncountable set of spin values on a Cayley tree”, TMF, 191:3 (2017), 503–517; Theoret. and Math. Phys., 191:3 (2017), 910–923
Citation in format AMSBIB
\Bibitem{RozKha17}
\by U.~A.~Rozikov, F.~Kh.~Khaidarov
\paper Four competing interactions for models with an uncountable set of
spin values on a~Cayley tree
\jour TMF
\yr 2017
\vol 191
\issue 3
\pages 503--517
\mathnet{http://mi.mathnet.ru/tmf9215}
\crossref{https://doi.org/10.4213/tmf9215}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3662474}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...191..910R}
\elib{https://elibrary.ru/item.asp?id=29255340}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 191
\issue 3
\pages 910--923
\crossref{https://doi.org/10.1134/S0040577917060095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404743900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021684223}
Linking options:
  • https://www.mathnet.ru/eng/tmf9215
  • https://doi.org/10.4213/tmf9215
  • https://www.mathnet.ru/eng/tmf/v191/i3/p503
  • This publication is cited in the following 10 articles:
    1. I. M. Mavlonov, N. Kh. Khushvaktov, G. P. Arzikulov, F. Kh. Khaidarov, “On positive fixed points of operator of Hammerstein type with degenerate kernel and Gibbs measures”, Theoret. and Math. Phys., 220:3 (2024), 1580–1588  mathnet  crossref  crossref  mathscinet  adsnasa
    2. F. H. Haydarov, “On normal subgroups of the group representation of the Cayley tree”, Vladikavk. matem. zhurn., 25:4 (2023), 135–142  mathnet  crossref
    3. F. Kh. Khaidarov, R. A. Ilyasova, “On periodic Gibbs measures of the Ising model corresponding to new subgroups of the group representation of a Cayley tree”, Theoret. and Math. Phys., 210:2 (2022), 261–274  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    4. F. H. Khaidarov, “Existence and uniqueness of fixed points of an integral operator of Hammerstein type”, Theoret. and Math. Phys., 208:3 (2021), 1228–1238  mathnet  crossref  crossref  adsnasa  isi  elib
    5. F. H. Haydarov, “New condition on uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree”, Math. Phys. Anal. Geom., 24:4 (2021), 31  crossref  mathscinet  isi
    6. Yu. Kh. Eshkabilov, G. I. Botirov, F. H. Haydarov, “Phase transitions for models with a continuum set of spin values on a Bethe lattice”, Theoret. and Math. Phys., 205:1 (2020), 1372–1380  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    7. R. N. Ganikhodjaev, R. R. Kucharov, K. A. Aralova, “Positive fixed points of lyapunov operator”, Nanosyst.-Phys. Chem. Math., 11:4 (2020), 373–378  crossref  isi
    8. F. H. Haydarov, Sh. A. Akhtamaliyev, M. A. Nazirov, B. B. Qarshiyev, “Uniqueness of Gibbs measures for an Ising model with continuous spin values on a Cayley tree”, Rep. Math. Phys., 86:3 (2020), 293–302  crossref  mathscinet  isi
    9. F. H. Haydarov, “Fixed points of Lyapunov integral operators and Gibbs measures”, Positivity, 22:4 (2018), 1165–1172  crossref  mathscinet  isi  scopus
    10. Eshkabilov Yu.Kh., Haydarov F.H., “Lyapunov Operator l With Degenerate Kernel and Gibbs Measures”, Nanosyst.-Phys. Chem. Math., 8:5 (2017), 553–558  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:372
    Full-text PDF :149
    References:70
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025