Abstract:
We consider models with four competing interactions (external field, nearest neighbor, second neighbor, and three neighbors) and an uncountable set [0,1] of spin values on the Cayley tree of order two. We reduce the problem of describing the splitting Gibbs measures of the model to the problem of analyzing solutions of a nonlinear integral equation and study some particular cases for Ising and Potts models. We also show that periodic Gibbs measures for the given models either are translation invariant or have the period two. We present examples where periodic Gibbs measures with the period two are not unique.
Citation:
U. A. Rozikov, F. Kh. Khaidarov, “Four competing interactions for models with an uncountable set of
spin values on a Cayley tree”, TMF, 191:3 (2017), 503–517; Theoret. and Math. Phys., 191:3 (2017), 910–923
\Bibitem{RozKha17}
\by U.~A.~Rozikov, F.~Kh.~Khaidarov
\paper Four competing interactions for models with an uncountable set of
spin values on a~Cayley tree
\jour TMF
\yr 2017
\vol 191
\issue 3
\pages 503--517
\mathnet{http://mi.mathnet.ru/tmf9215}
\crossref{https://doi.org/10.4213/tmf9215}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3662474}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...191..910R}
\elib{https://elibrary.ru/item.asp?id=29255340}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 191
\issue 3
\pages 910--923
\crossref{https://doi.org/10.1134/S0040577917060095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404743900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021684223}
Linking options:
https://www.mathnet.ru/eng/tmf9215
https://doi.org/10.4213/tmf9215
https://www.mathnet.ru/eng/tmf/v191/i3/p503
This publication is cited in the following 10 articles:
I. M. Mavlonov, N. Kh. Khushvaktov, G. P. Arzikulov, F. Kh. Khaidarov, “On positive fixed points of operator of Hammerstein type with degenerate kernel and Gibbs measures”, Theoret. and Math. Phys., 220:3 (2024), 1580–1588
F. H. Haydarov, “On normal subgroups of the group representation of the Cayley tree”, Vladikavk. matem. zhurn., 25:4 (2023), 135–142
F. Kh. Khaidarov, R. A. Ilyasova, “On periodic Gibbs measures of the Ising model corresponding to new subgroups of the group representation of a Cayley tree”, Theoret. and Math. Phys., 210:2 (2022), 261–274
F. H. Khaidarov, “Existence and uniqueness of fixed points of an integral operator of Hammerstein type”, Theoret. and Math. Phys., 208:3 (2021), 1228–1238
F. H. Haydarov, “New condition on uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree”, Math. Phys. Anal. Geom., 24:4 (2021), 31
Yu. Kh. Eshkabilov, G. I. Botirov, F. H. Haydarov, “Phase transitions for models with a continuum set of spin values on
a Bethe lattice”, Theoret. and Math. Phys., 205:1 (2020), 1372–1380
R. N. Ganikhodjaev, R. R. Kucharov, K. A. Aralova, “Positive fixed points of lyapunov operator”, Nanosyst.-Phys. Chem. Math., 11:4 (2020), 373–378
F. H. Haydarov, Sh. A. Akhtamaliyev, M. A. Nazirov, B. B. Qarshiyev, “Uniqueness of Gibbs measures for an Ising model with continuous spin values on a Cayley tree”, Rep. Math. Phys., 86:3 (2020), 293–302
F. H. Haydarov, “Fixed points of Lyapunov integral operators and Gibbs measures”, Positivity, 22:4 (2018), 1165–1172
Eshkabilov Yu.Kh., Haydarov F.H., “Lyapunov Operator l With Degenerate Kernel and Gibbs Measures”, Nanosyst.-Phys. Chem. Math., 8:5 (2017), 553–558