Abstract:
We consider quantum integrable models with the gl(2|1) symmetry and derive a set of multiple commutation relations between the monodromy matrix elements. These multiple commutation relations allow obtaining different representations for Bethe vectors.
Citation:
N. A. Slavnov, “Multiple commutation relations in the models with gl(2|1) symmetry”, TMF, 189:2 (2016), 256–278; Theoret. and Math. Phys., 189:2 (2016), 1624–1644
This publication is cited in the following 8 articles:
N. A. Slavnov, “Introduction to the nested algebraic Bethe ansatz”, SciPost Phys. Lect. Notes, 19 (2020), 1–53
Sh.-K. Yao, P. Liu, X.-Yu. Jia, “On super yangian covariance of the triple product system”, Adv. Appl. Clifford Algebr., 29:1 (2019), UNSP 15
N. Gromov, F. Levkovich-Maslyuk, “New compact construction of eigenstates for supersymmetric spin chains”, J. High Energy Phys., 2018, no. 9, 085
S. Belliard, N. A. Slavnov, B. Vallet, “Scalar product of twisted XXX modified Bethe vectors”, J. Stat. Mech.-Theory Exp., 2018, 093103
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{g}\mathfrak{l}(2|1)$ symmetry 2. Determinant representation”, J. Phys. A-Math. Theor., 50:3 (2017), 034004
N. Gromov, F. Levkovich-Maslyuk, G. Sizov, “New construction of eigenstates and separation of variables for $\mathrm{SU}(N)$ quantum spin chains”, J. High Energy Phys., 2017, no. 9, 111, front matter+39 pp.
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in the models with $\mathfrak{g}\mathfrak{l}(m|n)$ symmetry”, Nucl. Phys. B, 923 (2017), 277–311
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{g}\mathfrak{l}(2|1)$ symmetry 1. Super-analog of Reshetikhin formula”, J. Phys. A-Math. Theor., 49:45 (2016), 454005, 28 pp.