Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 189, Number 2, Pages 256–278
DOI: https://doi.org/10.4213/tmf9210
(Mi tmf9210)
 

This article is cited in 8 scientific papers (total in 8 papers)

Multiple commutation relations in the models with gl(2|1) symmetry

N. A. Slavnov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Full-text PDF (548 kB) Citations (8)
References:
Abstract: We consider quantum integrable models with the gl(2|1) symmetry and derive a set of multiple commutation relations between the monodromy matrix elements. These multiple commutation relations allow obtaining different representations for Bethe vectors.
Keywords: Bethe ansatz, monodromy matrix, commutation relation.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: 18.04.2016
English version:
Theoretical and Mathematical Physics, 2016, Volume 189, Issue 2, Pages 1624–1644
DOI: https://doi.org/10.1134/S0040577916110076
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. A. Slavnov, “Multiple commutation relations in the models with gl(2|1) symmetry”, TMF, 189:2 (2016), 256–278; Theoret. and Math. Phys., 189:2 (2016), 1624–1644
Citation in format AMSBIB
\Bibitem{Sla16}
\by N.~A.~Slavnov
\paper Multiple commutation relations in the~models with $\mathfrak gl(2|1)$ symmetry
\jour TMF
\yr 2016
\vol 189
\issue 2
\pages 256--278
\mathnet{http://mi.mathnet.ru/tmf9210}
\crossref{https://doi.org/10.4213/tmf9210}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589033}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...189.1624S}
\elib{https://elibrary.ru/item.asp?id=27485055}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 189
\issue 2
\pages 1624--1644
\crossref{https://doi.org/10.1134/S0040577916110076}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000389995500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85002717868}
Linking options:
  • https://www.mathnet.ru/eng/tmf9210
  • https://doi.org/10.4213/tmf9210
  • https://www.mathnet.ru/eng/tmf/v189/i2/p256
  • Related presentations:
    This publication is cited in the following 8 articles:
    1. N. A. Slavnov, “Introduction to the nested algebraic Bethe ansatz”, SciPost Phys. Lect. Notes, 19 (2020), 1–53  mathnet  crossref
    2. Sh.-K. Yao, P. Liu, X.-Yu. Jia, “On super yangian covariance of the triple product system”, Adv. Appl. Clifford Algebr., 29:1 (2019), UNSP 15  crossref  mathscinet  isi
    3. N. Gromov, F. Levkovich-Maslyuk, “New compact construction of eigenstates for supersymmetric spin chains”, J. High Energy Phys., 2018, no. 9, 085  crossref  mathscinet  isi  scopus
    4. S. Belliard, N. A. Slavnov, B. Vallet, “Scalar product of twisted XXX modified Bethe vectors”, J. Stat. Mech.-Theory Exp., 2018, 093103  crossref  mathscinet  isi  scopus
    5. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{g}\mathfrak{l}(2|1)$ symmetry 2. Determinant representation”, J. Phys. A-Math. Theor., 50:3 (2017), 034004  crossref  mathscinet  zmath  isi  elib  scopus
    6. N. Gromov, F. Levkovich-Maslyuk, G. Sizov, “New construction of eigenstates and separation of variables for $\mathrm{SU}(N)$ quantum spin chains”, J. High Energy Phys., 2017, no. 9, 111, front matter+39 pp.  crossref  mathscinet  zmath  isi  scopus
    7. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in the models with $\mathfrak{g}\mathfrak{l}(m|n)$ symmetry”, Nucl. Phys. B, 923 (2017), 277–311  crossref  zmath  isi  scopus
    8. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{g}\mathfrak{l}(2|1)$ symmetry 1. Super-analog of Reshetikhin formula”, J. Phys. A-Math. Theor., 49:45 (2016), 454005, 28 pp.  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:411
    Full-text PDF :143
    References:68
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025