Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 189, Number 2, Pages 239–255
DOI: https://doi.org/10.4213/tmf9108
(Mi tmf9108)
 

This article is cited in 23 scientific papers (total in 23 papers)

Solvability of a nonlinear model Boltzmann equation in the problem of a plane shock wave

A. Kh. Khachatryana, Kh. A. Khachatryanb

a Armenian State Agrarian University, Yerevan, Armenia
b Institute of Mathematics, National Academy of Sciences of Armenia, Yerevan, Armenia
References:
Abstract: We consider a nonlinear system of integral equations describing the structure of a plane shock wave. Based on physical reasoning, we propose an iterative method for constructing an approximate solution of this system. The problem reduces to studying decoupled scalar nonlinear and linear integral equations for the gas temperature, density, and velocity. We formulate a theorem on the existence of a positive bounded solution of a nonlinear equation of the Uryson type. We also prove theorems on the existence and uniqueness of bounded positive solutions for linear integral equations in the space L1[r,r] for all finite r<+. For a more general nonlinear integral equation, we prove a theorem on the existence of a positive solution and also find a lower bound and an integral upper bound for the constructed solution.
Keywords: nonlinearity, shock wave, integral equation, bounded solution, iteration, pointwise convergence.
Funding agency Grant number
State Committee on Science of the Ministry of Education and Science of the Republic of Armenia SCS 15T-1A033
This research is supported by the State Science Committee, Ministry of Education and Science, Republic of Armenia (Project No. SCS 15T-1A033).
Received: 14.12.2015
Revised: 29.01.2016
English version:
Theoretical and Mathematical Physics, 2016, Volume 189, Issue 2, Pages 1609–1623
DOI: https://doi.org/10.1134/S0040577916110064
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Kh. Khachatryan, Kh. A. Khachatryan, “Solvability of a nonlinear model Boltzmann equation in the problem of a plane shock wave”, TMF, 189:2 (2016), 239–255; Theoret. and Math. Phys., 189:2 (2016), 1609–1623
Citation in format AMSBIB
\Bibitem{KhaKha16}
\by A.~Kh.~Khachatryan, Kh.~A.~Khachatryan
\paper Solvability of a~nonlinear model Boltzmann equation in the~problem of a~plane shock wave
\jour TMF
\yr 2016
\vol 189
\issue 2
\pages 239--255
\mathnet{http://mi.mathnet.ru/tmf9108}
\crossref{https://doi.org/10.4213/tmf9108}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589032}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...189.1609K}
\elib{https://elibrary.ru/item.asp?id=27485054}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 189
\issue 2
\pages 1609--1623
\crossref{https://doi.org/10.1134/S0040577916110064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000389995500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85002998681}
Linking options:
  • https://www.mathnet.ru/eng/tmf9108
  • https://doi.org/10.4213/tmf9108
  • https://www.mathnet.ru/eng/tmf/v189/i2/p239
  • This publication is cited in the following 23 articles:
    1. A. Kh. Khachatryan, Kh. A. Khachatryan, H. S. Petrosyan, “Solvability of a system of nonlinear integral equations on the entire line”, Complex Variables and Elliptic Equations, 2025, 1  crossref
    2. A. Kh. Khachatryan, Kh. A. Khachatryan, A. S. Petrosyan, “Voprosy suschestvovaniya, otsutstviya i edinstvennosti resheniya odnogo klassa nelineinykh integralnykh uravnenii na vsei pryamoi s operatorom tipa Gammershteina — Ctiltesa”, Tr. IMM UrO RAN, 30, no. 1, 2024, 249–269  mathnet  crossref  elib
    3. Kh. A. Khachatryan, H. S. Petrosyan, “Asymptotic Behavior of the Solution for One Class of Nonlinear Integral Equations of Hammerstein Type on the Whole Axis”, J Math Sci, 282:2 (2024), 292  crossref
    4. Kh. A. Khachatryan, H. S. Petrosyan, “Constructive study of the solvability of one class of nonlinear integral equations with a symmetric kernel”, Siberian Adv. Math., 34:4 (2024), 320–336  mathnet  crossref  crossref
    5. H. S. Petrosyan, Kh. A. Khachatryan, “Uniqueness of the Solution of a Class of Integral Equations with Sum-Difference. Kernel and with Convex Nonlinearity on the Positive Half-Line”, Math. Notes, 113:4 (2023), 512–524  mathnet  crossref  crossref  mathscinet
    6. Kh. A. Khachatryan, H. S. Petrosyan, “On non-trivial solvability of one system of non-linear integral equations on the real axis”, Izv. Math., 87:5 (2023), 1062–1077  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. Kh. A. Khachatryan, H. S. Petrosyan, A. R. Hakobyan, “On some systems of nonlinear integral equations on the whole axis with monotonous Hammerstein–Volterra type operators”, Eurasian Math. J., 14:3 (2023), 35–53  mathnet  crossref
    8. A. A. Davydov, Kh. A. Khachatryan, A. S. Petrosyan, “On Solutions of a System of Nonlinear Integral Equations of Convolution Type on the Entire Real Line”, Differentsialnye uravneniya, 59:11 (2023), 1500  crossref
    9. A.Kh. Khachatryan, Kh.A. Khachatryan, “ON QUALITATIVE PROPERTIES OF A SOLUTION OF ONE CLASS SINGULAR INTEGRAL EQUATIONS ON THE WHOLE LINE WITH ODD NONLINEARITY”, J Math Sci, 271:5 (2023), 597  crossref
    10. A. A. Davydov, Kh. A. Khachatryan, H. S. Petrosyan, “On Solutions of a System of Nonlinear Integral Equations of Convolution Type on the Entire Real Line”, Diff Equat, 59:11 (2023), 1504  crossref
    11. Kh. A. Khachatryan, A. S. Petrosyan, “Asimptoticheskoe povedenie resheniya dlya odnogo klassa nelineinykh integralnykh uravnenii tipa Gammershteina na vsei pryamoi”, SMFN, 68, no. 2, Rossiiskii universitet druzhby narodov, M., 2022, 376–391  mathnet  crossref  mathscinet
    12. Kh. A. Khachatryan, A. S. Petrosyan, “Voprosy suschestvovaniya i edinstvennosti resheniya odnogo klassa nelineinykh integralnykh uravnenii na vsei pryamoi”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 26:3 (2022) (to appear)  mathnet
    13. Kh. A. Khachatryan, A. S. Petrosyan, “Voprosy suschestvovaniya i edinstvennosti resheniya odnogo klassa nelineinykh integralnykh uravnenii na vsei pryamoi”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 26:3 (2022), 446–479  mathnet  crossref
    14. Kh. A. Khachatryan, H. S. Petrosyan, S. M. Andriyan, “On the solubility of a class of two-dimensional integral equations on a quarter plane with monotone nonlinearity”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2022, no. 2, 19–38  mathnet  crossref  mathscinet
    15. A. Kh. Khachatryan, Kh. A. Khachatryan, “Ob odnoi sisteme integralnykh uravnenii na vsei pryamoi s vypukloi i monotonnoi nelineinostyu”, Proceedings of NAS RA. Mathematics, 2022, 65  crossref
    16. A. Kh. Khachatryan, Kh. A. Khachatryan, “A System of Integral Equations on the Entire Axis with Convex and Monotone Nonlinearity”, J. Contemp. Mathemat. Anal., 57:5 (2022), 311  crossref
    17. Kh. A. Khachatryan, H. S. Petrosyan, “On a class of convolution type nonlinear integral equations with an even kernel”, Int. J. Mod. Phys. A, 37:20n21 (2022)  crossref
    18. Kh. A. Khachatryan, H. S. Petrosyan, “On One Class of Multidimensional Integral Equations of Convolution Type with Convex Nonlinearity”, Diff Equat, 58:5 (2022), 680  crossref
    19. A. Kh. Khachatryan, Kh. A. Khachatryan, H. S. Petrosyan, “On positive bounded solutions of one class of nonlinear integral equations with the Hammerstein-Nemytskii operator”, Differ. Equ., 57:6 (2021), 768–779  crossref  mathscinet  isi
    20. Kh. A. Khachatryan, “Existence and uniqueness of solution of a certain boundary-value problem for a convolution integral equation with monotone non-linearity”, Izv. Math., 84:4 (2020), 807–815  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:777
    Full-text PDF :160
    References:69
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025