Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 189, Number 2, Pages 239–255
DOI: https://doi.org/10.4213/tmf9108
(Mi tmf9108)
 

This article is cited in 21 scientific papers (total in 21 papers)

Solvability of a nonlinear model Boltzmann equation in the problem of a plane shock wave

A. Kh. Khachatryana, Kh. A. Khachatryanb

a Armenian State Agrarian University, Yerevan, Armenia
b Institute of Mathematics, National Academy of Sciences of Armenia, Yerevan, Armenia
References:
Abstract: We consider a nonlinear system of integral equations describing the structure of a plane shock wave. Based on physical reasoning, we propose an iterative method for constructing an approximate solution of this system. The problem reduces to studying decoupled scalar nonlinear and linear integral equations for the gas temperature, density, and velocity. We formulate a theorem on the existence of a positive bounded solution of a nonlinear equation of the Uryson type. We also prove theorems on the existence and uniqueness of bounded positive solutions for linear integral equations in the space $L_1[-r,r]$ for all finite $r<+\infty$. For a more general nonlinear integral equation, we prove a theorem on the existence of a positive solution and also find a lower bound and an integral upper bound for the constructed solution.
Keywords: nonlinearity, shock wave, integral equation, bounded solution, iteration, pointwise convergence.
Funding agency Grant number
State Committee on Science of the Ministry of Education and Science of the Republic of Armenia SCS 15T-1A033
This research is supported by the State Science Committee, Ministry of Education and Science, Republic of Armenia (Project No. SCS 15T-1A033).
Received: 14.12.2015
Revised: 29.01.2016
English version:
Theoretical and Mathematical Physics, 2016, Volume 189, Issue 2, Pages 1609–1623
DOI: https://doi.org/10.1134/S0040577916110064
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Kh. Khachatryan, Kh. A. Khachatryan, “Solvability of a nonlinear model Boltzmann equation in the problem of a plane shock wave”, TMF, 189:2 (2016), 239–255; Theoret. and Math. Phys., 189:2 (2016), 1609–1623
Citation in format AMSBIB
\Bibitem{KhaKha16}
\by A.~Kh.~Khachatryan, Kh.~A.~Khachatryan
\paper Solvability of a~nonlinear model Boltzmann equation in the~problem of a~plane shock wave
\jour TMF
\yr 2016
\vol 189
\issue 2
\pages 239--255
\mathnet{http://mi.mathnet.ru/tmf9108}
\crossref{https://doi.org/10.4213/tmf9108}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589032}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...189.1609K}
\elib{https://elibrary.ru/item.asp?id=27485054}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 189
\issue 2
\pages 1609--1623
\crossref{https://doi.org/10.1134/S0040577916110064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000389995500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85002998681}
Linking options:
  • https://www.mathnet.ru/eng/tmf9108
  • https://doi.org/10.4213/tmf9108
  • https://www.mathnet.ru/eng/tmf/v189/i2/p239
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:727
    Full-text PDF :146
    References:61
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024