Abstract:
We study the evolution of a system of N particles that have identical masses and charges and interact via the generalized Yukawa potential. The system is placed in a bounded region. The evolution of such a system is described by the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) chain of quantum kinetic equations. Using semigroup theory, we prove the existence of a unique solution of the BBGKY chain of quantum kinetic equations with the generalized Yukawa potential.
The research of M. Yu. Rasulova and U. A. Avazov was
performed at the Institute of Nuclear Physics of the Uzbekistan Academy of
Sciences and supported by the Committee for Coordination of Science and
Technology Development of Uzbekistan (Grant No. F2-FA-A116).
Citation:
N. N. Bogolyubov (Jr.), M. Yu. Rasulova, U. A. Avazov, “Evolution of a quantum system of many particles interacting via the generalized Yukawa potential”, TMF, 189:3 (2016), 446–452; Theoret. and Math. Phys., 189:3 (2016), 1790–1795
\Bibitem{BogRasAva16}
\by N.~N.~Bogolyubov (Jr.), M.~Yu.~Rasulova, U.~A.~Avazov
\paper Evolution of a~quantum system of many particles interacting via the~generalized Yukawa potential
\jour TMF
\yr 2016
\vol 189
\issue 3
\pages 446--452
\mathnet{http://mi.mathnet.ru/tmf9172}
\crossref{https://doi.org/10.4213/tmf9172}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589047}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...189.1790B}
\elib{https://elibrary.ru/item.asp?id=27485074}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 189
\issue 3
\pages 1790--1795
\crossref{https://doi.org/10.1134/S0040577916120102}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000392087200010}
\elib{https://elibrary.ru/item.asp?id=28041380}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85008668709}
Linking options:
https://www.mathnet.ru/eng/tmf9172
https://doi.org/10.4213/tmf9172
https://www.mathnet.ru/eng/tmf/v189/i3/p446
This publication is cited in the following 1 articles:
Nikolai (Jr) Bogoliubov, Mukhayo Yunusovna Rasulova, Tohir Vohidovich Akramov, Umarbek Avazov, Multi-Chaos, Fractal and Multi-Fractional Artificial Intelligence of Different Complex Systems, 2022, 201