Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 189, Number 3, Pages 453–463
DOI: https://doi.org/10.4213/tmf8885
(Mi tmf8885)
 

This article is cited in 1 scientific paper (total in 1 paper)

Stationary Fokker–Planck equation on noncompact manifolds and in unbounded domains

A. I. Noarov

Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
Full-text PDF (401 kB) Citations (1)
References:
Abstract: We investigate the Fokker–Planck equation on an infinite cylindrical surface and in an infinite strip with reflecting boundary conditions, prove the existence of a positive (not necessarily integrable) solution, and derive various conditions on the vector field $\mathbf f$ that are sufficient for the existence of a solution that is the probability density. In particular, these conditions are satisfied for some vector fields $\mathbf f$ with integral trajectories going to infinity.
Keywords: diffusion process, stationary distribution, elliptic equation for measures, averaging method.
Received: 04.03.2015
Revised: 01.02.2016
English version:
Theoretical and Mathematical Physics, 2016, Volume 189, Issue 3, Pages 1796–1805
DOI: https://doi.org/10.1134/S0040577916120114
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. I. Noarov, “Stationary Fokker–Planck equation on noncompact manifolds and in unbounded domains”, TMF, 189:3 (2016), 453–463; Theoret. and Math. Phys., 189:3 (2016), 1796–1805
Citation in format AMSBIB
\Bibitem{Noa16}
\by A.~I.~Noarov
\paper Stationary Fokker--Planck equation on noncompact manifolds and in unbounded domains
\jour TMF
\yr 2016
\vol 189
\issue 3
\pages 453--463
\mathnet{http://mi.mathnet.ru/tmf8885}
\crossref{https://doi.org/10.4213/tmf8885}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589048}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...189.1796N}
\elib{https://elibrary.ru/item.asp?id=27485075}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 189
\issue 3
\pages 1796--1805
\crossref{https://doi.org/10.1134/S0040577916120114}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000392087200011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85008601710}
Linking options:
  • https://www.mathnet.ru/eng/tmf8885
  • https://doi.org/10.4213/tmf8885
  • https://www.mathnet.ru/eng/tmf/v189/i3/p453
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:420
    Full-text PDF :158
    References:68
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024