Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 191, Number 1, Pages 100–115
DOI: https://doi.org/10.4213/tmf9154
(Mi tmf9154)
 

This article is cited in 1 scientific paper (total in 1 paper)

Canonical ensemble of particles in a self-avoiding random walk

V. I. Alkhimov

Information Technology Faculty, Moscow State University of Psychology and Education, Moscow, Russia
Full-text PDF (454 kB) Citations (1)
References:
Abstract: We consider an ensemble of particles not interacting with each other and randomly walking in the d-dimensional Euclidean space Rd. The individual moves of each particle are governed by the same distribution, but after the completion of each such move of a particle, its position in the medium is "marked" as a region in the form of a ball of diameter r0, which is not available for subsequent visits by this particle. As a result, we obtain the corresponding ensemble in Rd of marked trajectories in each of which the distance between the centers of any pair of these balls is greater than r0. We describe a method for computing the asymptotic form of the probability density Wn(r) of the distance r between the centers of the initial and final balls of a trajectory consisting of n individual moves of a particle of the ensemble. The number n, the trajectory modulus, is a random variable in this model in addition to the distance r. This makes it necessary to determine the distribution of n, for which we use the canonical distribution obtained from the most probable distribution of particles in the ensemble over the moduli of their trajectories. Averaging the density Wn(r) over the canonical distribution of the modulus n allows finding the asymptotic behavior of the probability density of the distance r between the ends of the paths of the canonical ensemble of particles in a self-avoiding random walk in Rd for 2d<4.
Keywords: canonical ensemble, self-avoiding random walk, constitutive equation, renormalization group, saddle-point method, asymptotic distribution.
Received: 25.01.2016
Revised: 14.02.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 191, Issue 1, Pages 558–571
DOI: https://doi.org/10.1134/S0040577917040079
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Alkhimov, “Canonical ensemble of particles in a self-avoiding random walk”, TMF, 191:1 (2017), 100–115; Theoret. and Math. Phys., 191:1 (2017), 558–571
Citation in format AMSBIB
\Bibitem{Alk17}
\by V.~I.~Alkhimov
\paper Canonical ensemble of particles in a~self-avoiding random walk
\jour TMF
\yr 2017
\vol 191
\issue 1
\pages 100--115
\mathnet{http://mi.mathnet.ru/tmf9154}
\crossref{https://doi.org/10.4213/tmf9154}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3631860}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...191..558A}
\elib{https://elibrary.ru/item.asp?id=28931476}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 191
\issue 1
\pages 558--571
\crossref{https://doi.org/10.1134/S0040577917040079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000400773000007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018758355}
Linking options:
  • https://www.mathnet.ru/eng/tmf9154
  • https://doi.org/10.4213/tmf9154
  • https://www.mathnet.ru/eng/tmf/v191/i1/p100
  • This publication is cited in the following 1 articles:
    1. Nikolai A. Poklonski, Ilya I. Anikeev, Sergey A. Vyrko, Andrei G. Zabrodskii, “Calculation of the Activation Energy of Electrical ε2‐Conductivity of Weakly Compensated Semiconductors”, Physica Status Solidi (b), 2024  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:497
    Full-text PDF :168
    References:86
    First page:14
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025