Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 191, Number 1, Pages 100–115
DOI: https://doi.org/10.4213/tmf9154
(Mi tmf9154)
 

This article is cited in 1 scientific paper (total in 1 paper)

Canonical ensemble of particles in a self-avoiding random walk

V. I. Alkhimov

Information Technology Faculty, Moscow State University of Psychology and Education, Moscow, Russia
Full-text PDF (454 kB) Citations (1)
References:
Abstract: We consider an ensemble of particles not interacting with each other and randomly walking in the $d$-dimensional Euclidean space $\mathbb R^d$. The individual moves of each particle are governed by the same distribution, but after the completion of each such move of a particle, its position in the medium is "marked" as a region in the form of a ball of diameter $r_0$, which is not available for subsequent visits by this particle. As a result, we obtain the corresponding ensemble in $\mathbb R^d$ of marked trajectories in each of which the distance between the centers of any pair of these balls is greater than $r_0$. We describe a method for computing the asymptotic form of the probability density $W_n(\mathbf r)$ of the distance $r$ between the centers of the initial and final balls of a trajectory consisting of $n$ individual moves of a particle of the ensemble. The number $n$, the trajectory modulus, is a random variable in this model in addition to the distance $r$. This makes it necessary to determine the distribution of $n$, for which we use the canonical distribution obtained from the most probable distribution of particles in the ensemble over the moduli of their trajectories. Averaging the density $W_n(\mathbf r)$ over the canonical distribution of the modulus $n$ allows finding the asymptotic behavior of the probability density of the distance $r$ between the ends of the paths of the canonical ensemble of particles in a self-avoiding random walk in $\mathbb R^d$ for $2\le d<4$.
Keywords: canonical ensemble, self-avoiding random walk, constitutive equation, renormalization group, saddle-point method, asymptotic distribution.
Received: 25.01.2016
Revised: 14.02.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 191, Issue 1, Pages 558–571
DOI: https://doi.org/10.1134/S0040577917040079
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Alkhimov, “Canonical ensemble of particles in a self-avoiding random walk”, TMF, 191:1 (2017), 100–115; Theoret. and Math. Phys., 191:1 (2017), 558–571
Citation in format AMSBIB
\Bibitem{Alk17}
\by V.~I.~Alkhimov
\paper Canonical ensemble of particles in a~self-avoiding random walk
\jour TMF
\yr 2017
\vol 191
\issue 1
\pages 100--115
\mathnet{http://mi.mathnet.ru/tmf9154}
\crossref{https://doi.org/10.4213/tmf9154}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3631860}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...191..558A}
\elib{https://elibrary.ru/item.asp?id=28931476}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 191
\issue 1
\pages 558--571
\crossref{https://doi.org/10.1134/S0040577917040079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000400773000007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018758355}
Linking options:
  • https://www.mathnet.ru/eng/tmf9154
  • https://doi.org/10.4213/tmf9154
  • https://www.mathnet.ru/eng/tmf/v191/i1/p100
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:464
    Full-text PDF :142
    References:76
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024