Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 191, Number 1, Pages 78–99
DOI: https://doi.org/10.4213/tmf9062
(Mi tmf9062)
 

This article is cited in 2 scientific papers (total in 2 papers)

Dissipation effects in infinite-dimensional Hamiltonian systems.

S. M. Saulin

Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (601 kB) Citations (2)
References:
Abstract: We show that the potential coupling of classical mechanical systems (an oscillator and a heat bath), one of which (the heat bath) is linear and infinite-dimensional, can provoke energy dissipation in a finite-dimensional subsystem (the oscillator). Under natural assumptions, the final dynamics of an oscillator thus reduces to a tendency toward equilibrium. D. V. Treschev previously obtained results concerning the dynamics of an oscillator with one degree of freedom and a quadratic or (under some additional assumptions) polynomial potential. Later, A. V. Dymov considered the case of a linear oscillator with an arbitrary (finite) number of degrees of freedom. We generalize these results to the case of a heat bath (consisting of several components) and a multidimensional oscillator (either linear or nonlinear).
Keywords: Lagrange system, system with infinite number of degrees of freedom, final dynamics.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-03747
This research was supported by the Russian Foundation for Basic Research (Grant No. 15-01-03747).
Received: 07.10.2015
Revised: 28.03.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 191, Issue 1, Pages 537–557
DOI: https://doi.org/10.1134/S0040577917040067
Bibliographic databases:
Language: Russian
Citation: S. M. Saulin, “Dissipation effects in infinite-dimensional Hamiltonian systems.”, TMF, 191:1 (2017), 78–99; Theoret. and Math. Phys., 191:1 (2017), 537–557
Citation in format AMSBIB
\Bibitem{Sau17}
\by S.~M.~Saulin
\paper Dissipation effects in infinite-dimensional Hamiltonian systems.
\jour TMF
\yr 2017
\vol 191
\issue 1
\pages 78--99
\mathnet{http://mi.mathnet.ru/tmf9062}
\crossref{https://doi.org/10.4213/tmf9062}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3631859}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...191..537S}
\elib{https://elibrary.ru/item.asp?id=28931475}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 191
\issue 1
\pages 537--557
\crossref{https://doi.org/10.1134/S0040577917040067}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000400773000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018730433}
Linking options:
  • https://www.mathnet.ru/eng/tmf9062
  • https://doi.org/10.4213/tmf9062
  • https://www.mathnet.ru/eng/tmf/v191/i1/p78
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:596
    Full-text PDF :170
    References:75
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024