Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 188, Number 1, Pages 85–120
DOI: https://doi.org/10.4213/tmf9085
(Mi tmf9085)
 

This article is cited in 15 scientific papers (total in 15 papers)

$(1+1)$-Correlators and moving massive defects

D. S. Ageeva, I. Ya. Aref'evaa, M. D. Tikhanovskayaba

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b National Engineering Physics Institute "MEPhI", Moscow, Russia
References:
Abstract: We study correlation functions of scalar operators on the boundary of the AdS$_3$ space deformed by moving massive particles in the context of the AdS/CFT duality. To calculate two-point correlation functions, we use the geodesic approximation and the renormalized image method, obtained from the traditional image method with the renormalization taken into account. We compare results obtained using the renormalized image method with direct calculations using tracing of winding geodesics around the cone singularities. Examples demonstrate that the results coincide. We show that correlators in the geodesic approximation have a zone structure, which depends substantially on the particle mass and velocity.
Keywords: AdS/CFT correspondence, holographic duality, conical defect, thermalization.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00707
Instituto Nazionale di Fisica Nucleare
Ministry of Education and Science of the Russian Federation MK-2510.2014.1
This research is supported by the Russian Foundation for Basic Research (Grant No. 14-01-00707). The research of D. S. Ageev is supported by the Grant Council of the President of Russia (Grant No. MK-2510.2014.1). The research of I. Ya. Aref'eva was supported in part by the INFN during the preparation of this work.
Received: 16.06.2015
Revised: 27.10.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 188, Issue 1, Pages 1038–1068
DOI: https://doi.org/10.1134/S0040577916070060
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. S. Ageev, I. Ya. Aref'eva, M. D. Tikhanovskaya, “$(1+1)$-Correlators and moving massive defects”, TMF, 188:1 (2016), 85–120; Theoret. and Math. Phys., 188:1 (2016), 1038–1068
Citation in format AMSBIB
\Bibitem{AgeAreTik16}
\by D.~S.~Ageev, I.~Ya.~Aref'eva, M.~D.~Tikhanovskaya
\paper $(1+1)$-Correlators and moving massive defects
\jour TMF
\yr 2016
\vol 188
\issue 1
\pages 85--120
\mathnet{http://mi.mathnet.ru/tmf9085}
\crossref{https://doi.org/10.4213/tmf9085}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3535402}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...188.1038A}
\elib{https://elibrary.ru/item.asp?id=26414455}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 188
\issue 1
\pages 1038--1068
\crossref{https://doi.org/10.1134/S0040577916070060}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380653700006}
\elib{https://elibrary.ru/item.asp?id=27143062}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84982659125}
Linking options:
  • https://www.mathnet.ru/eng/tmf9085
  • https://doi.org/10.4213/tmf9085
  • https://www.mathnet.ru/eng/tmf/v188/i1/p85
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024