Abstract:
We construct phase-space representations for a relativistic particle in both a constant and a time-dependent linear potential. We obtain explicit expressions for the Wigner distribution functions for these systems and find the correct nonrelativistic limit and free-particle limit for these functions. We derive the relativistic dynamical equation governing the time development of the Wigner distribution function and relativistic equation for the Wigner distribution function of stationary states and also calculate the amplitudes of transitions between energy states.
Keywords:
relativistic particle, linear potential, Wigner function, dynamical equation.
Funding agency
This research is supported by the Science
Development Foundation under the President of the Republic of Azerbaijan
(Research Grant No. EIF-2012-2(6)-39/08/1).
Citation:
Sh. M. Nagiyev, “Wigner function of a relativistic particle in a time-dependent linear potential”, TMF, 188:1 (2016), 76–84; Theoret. and Math. Phys., 188:1 (2016), 1030–1037
\Bibitem{Nag16}
\by Sh.~M.~Nagiyev
\paper Wigner function of a~relativistic particle in a~time-dependent linear potential
\jour TMF
\yr 2016
\vol 188
\issue 1
\pages 76--84
\mathnet{http://mi.mathnet.ru/tmf9014}
\crossref{https://doi.org/10.4213/tmf9014}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3535401}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...188.1030N}
\elib{https://elibrary.ru/item.asp?id=26414454}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 188
\issue 1
\pages 1030--1037
\crossref{https://doi.org/10.1134/S0040577916070059}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380653700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980526209}
Linking options:
https://www.mathnet.ru/eng/tmf9014
https://doi.org/10.4213/tmf9014
https://www.mathnet.ru/eng/tmf/v188/i1/p76
This publication is cited in the following 3 articles:
Sh. M. Nagiyev, A. I. Akhmedov, “Time evolution of quadratic quantum systems: Evolution operators, propagators, and invariants”, Theoret. and Math. Phys., 198:3 (2019), 392–411
Sh. M. Nagiyev, A. I. Ahmadov, V. A. Tarverdiyeva, Sh. A. Amirova, “Regarding nonstationary quadratic quantum systems”, Russ. Phys. J., 61:12 (2019), 2173–2187
Sh. M. Nagiyev, “Using the evolution operator method to describe a particle in a homogeneous alternating field”, Theoret. and Math. Phys., 194:2 (2018), 313–327