Abstract:
We consider the Hamiltonian Hμ of a system of three identical quantum particles (bosons) moving on a d-dimensional lattice Zd, d=1,2, and coupled by an attractive pairwise contact potential μ<0. We prove that the number of bound states of the corresponding Schrödinger operator Hμ(K), K∈Td, is finite and establish the location and structure of its essential spectrum. We show that the bound state decays exponentially at infinity and that the eigenvalue and the corresponding bound state as functions of the quasimomentum K∈Td are regular.
Citation:
S. N. Lakaev, A. R. Khalmukhamedov, A. M. Khalkhuzhaev, “Bound states of the Schrödinger operator of a system of three bosons on a lattice”, TMF, 188:1 (2016), 36–48; Theoret. and Math. Phys., 188:1 (2016), 994–1005
\Bibitem{LakKhaKha16}
\by S.~N.~Lakaev, A.~R.~Khalmukhamedov, A.~M.~Khalkhuzhaev
\paper Bound states of the~Schr\"odinger operator of a~system of three bosons on a~lattice
\jour TMF
\yr 2016
\vol 188
\issue 1
\pages 36--48
\mathnet{http://mi.mathnet.ru/tmf9058}
\crossref{https://doi.org/10.4213/tmf9058}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3535399}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...188..994L}
\elib{https://elibrary.ru/item.asp?id=26414450}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 188
\issue 1
\pages 994--1005
\crossref{https://doi.org/10.1134/S0040577916070035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380653700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980635020}
Linking options:
https://www.mathnet.ru/eng/tmf9058
https://doi.org/10.4213/tmf9058
https://www.mathnet.ru/eng/tmf/v188/i1/p36
This publication is cited in the following 3 articles:
Zh. I. Abdullaev, J. Kh. Boymurodov, A. M. Khalkhuzhaev, “On the Existence of Eigenvalues of the Three-Particle Discrete Schrödinger Operator”, Math. Notes, 114:5 (2023), 645–658
Zh. I. Abdullaev, A. M. Khalkhuzhaev, T. Kh. Rasulov, “Invariantnye podprostranstva i sobstvennye znacheniya trekhchastichnogo diskretnogo operatora Shredingera”, Izv. vuzov. Matem., 2023, no. 9, 3–19
J. I. Abdullaev, A. M. Khalkhuzhaev, T. H. Rasulov, “Invariant Subspaces and Eigenvalues of the Three-Particle Discrete Schrödinger Operators”, Russ Math., 67:9 (2023), 1