Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 188, Number 1, Pages 36–48
DOI: https://doi.org/10.4213/tmf9058
(Mi tmf9058)
 

This article is cited in 3 scientific papers (total in 3 papers)

Bound states of the Schrödinger operator of a system of three bosons on a lattice

S. N. Lakaev, A. R. Khalmukhamedov, A. M. Khalkhuzhaev

Samarkand State University, Samarkand, Uzbekistan
Full-text PDF (433 kB) Citations (3)
References:
Abstract: We consider the Hamiltonian $H_\mu$ of a system of three identical quantum particles (bosons) moving on a $d$-dimensional lattice $\mathbb Z^d$, $d=1,2$, and coupled by an attractive pairwise contact potential $\mu<0$. We prove that the number of bound states of the corresponding Schrödinger operator $H_\mu(K)$, $K\in\mathbb T^d$, is finite and establish the location and structure of its essential spectrum. We show that the bound state decays exponentially at infinity and that the eigenvalue and the corresponding bound state as functions of the quasimomentum $K\in\mathbb T^d$ are regular.
Keywords: discrete Schrodinger operator, three-particle system, contact coupling, eigenvalue, bound state, essential spectrum, lattice.
Funding agency
This research was supported by the Foundation for Supporting Fundamental Sciences of the Republic of Uzbekistan.
Received: 28.09.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 188, Issue 1, Pages 994–1005
DOI: https://doi.org/10.1134/S0040577916070035
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. N. Lakaev, A. R. Khalmukhamedov, A. M. Khalkhuzhaev, “Bound states of the Schrödinger operator of a system of three bosons on a lattice”, TMF, 188:1 (2016), 36–48; Theoret. and Math. Phys., 188:1 (2016), 994–1005
Citation in format AMSBIB
\Bibitem{LakKhaKha16}
\by S.~N.~Lakaev, A.~R.~Khalmukhamedov, A.~M.~Khalkhuzhaev
\paper Bound states of the~Schr\"odinger operator of a~system of three bosons on a~lattice
\jour TMF
\yr 2016
\vol 188
\issue 1
\pages 36--48
\mathnet{http://mi.mathnet.ru/tmf9058}
\crossref{https://doi.org/10.4213/tmf9058}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3535399}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...188..994L}
\elib{https://elibrary.ru/item.asp?id=26414450}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 188
\issue 1
\pages 994--1005
\crossref{https://doi.org/10.1134/S0040577916070035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380653700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980635020}
Linking options:
  • https://www.mathnet.ru/eng/tmf9058
  • https://doi.org/10.4213/tmf9058
  • https://www.mathnet.ru/eng/tmf/v188/i1/p36
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:477
    Full-text PDF :190
    References:73
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024