Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 188, Number 1, Pages 20–35
DOI: https://doi.org/10.4213/tmf9023
(Mi tmf9023)
 

This article is cited in 48 scientific papers (total in 48 papers)

Schrödinger potentials solvable in terms of the confluent Heun functions

A. M. Ishkhanyanabc

a Institute for Physical Research,, National Academy of Sciences of Armenia, Ashtarak, Armenia
b Armenian State Pedagogical University, Yerevan, Armenia
c Institute of Physics and Technology, National Research Tomsk Polytechnic University, Tomsk, Russia
References:
Abstract: We show that if the potential is proportional to an energy-independent continuous parameter, then there exist 15 choices for the coordinate transformation that provide energy-independent potentials whose shape is independent of that parameter and for which the one-dimensional stationary Schrödinger equation is solvable in terms of the confluent Heun functions. All these potentials are also energy-independent and are determined by seven parameters. Because the confluent Heun equation is symmetric under transposition of its regular singularities, only nine of these potentials are independent. Five of the independent potentials are different generalizations of either a hypergeometric or a confluent hypergeometric classical potential, one potential as special cases includes potentials of two hypergeometric types (the Morse confluent hypergeometric and the Eckart hypergeometric potentials), and the remaining three potentials include five-parameter conditionally integrable confluent hypergeometric potentials. Not one of the confluent Heun potentials, generally speaking, can be transformed into any other by a parameter choice.
Keywords: stationary Schrödinger equation, integrable potential, confluent Heun equation.
Funding agency Grant number
State Committee on Science of the Ministry of Education and Science of the Republic of Armenia 13RB-052
15T-1C323
This research was performed within the scope of the International Associated Laboratory (CNRS-France & SCS-Armenia) IRMAS and was supported by the Armenian State Committee of Science (SCS Grant Nos. 13RB-052 and 15T-1C323) and the project "Leading Research Universities of Russia" (Grant No. FTI_120_2014 Tomsk Polytechnic University).
Received: 12.08.2015
Revised: 23.10.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 188, Issue 1, Pages 980–993
DOI: https://doi.org/10.1134/S0040577916070023
Bibliographic databases:
Document Type: Article
PACS: 03.65.-w, 03.65.Ge, 02.30.Ik, 02.30.Gp, 02.90.+p
Language: Russian
Citation: A. M. Ishkhanyan, “Schrödinger potentials solvable in terms of the confluent Heun functions”, TMF, 188:1 (2016), 20–35; Theoret. and Math. Phys., 188:1 (2016), 980–993
Citation in format AMSBIB
\Bibitem{Ish16}
\by A.~M.~Ishkhanyan
\paper Schr\"odinger potentials solvable in terms of the~confluent Heun
functions
\jour TMF
\yr 2016
\vol 188
\issue 1
\pages 20--35
\mathnet{http://mi.mathnet.ru/tmf9023}
\crossref{https://doi.org/10.4213/tmf9023}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3535398}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...188..980I}
\elib{https://elibrary.ru/item.asp?id=26414449}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 188
\issue 1
\pages 980--993
\crossref{https://doi.org/10.1134/S0040577916070023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380653700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980511819}
Linking options:
  • https://www.mathnet.ru/eng/tmf9023
  • https://doi.org/10.4213/tmf9023
  • https://www.mathnet.ru/eng/tmf/v188/i1/p20
  • This publication is cited in the following 48 articles:
    1. David Melikdzhanian, Artur Ishkhanyan, “Two-term Kummer function solutions of the 1D Schrödinger equation”, Mod. Phys. Lett. A, 2025  crossref
    2. Gregory Natanson, “Double-Step Shape Invariance of Radial Jacobi-Reference Potential and Breakdown of Conventional Rules of Supersymmetric Quantum Mechanics”, Axioms, 13:4 (2024), 273  crossref
    3. R R Hartmann, M E Portnoi, “Bipolar electron waveguides in two-dimensional materials with tilted Dirac cones”, Phys. Scr., 99:4 (2024), 045214  crossref
    4. S. Rahmani, H. Panahi, A. Najafizade, “Heun-type solutions for the Dirac particle on the curved background of Minkowski space-times”, Eur. Phys. J. Plus, 139:6 (2024)  crossref
    5. A.M. Ishkhanyan, “A quadratic transformation for a special confluent Heun function”, Heliyon, 10:16 (2024), e36535  crossref
    6. T. A. Ishkhanyan, A. M. Ishkhanyan, C. Cesarano, “Solutions of a Confluent Modification of the General Heun Equation in Terms of Generalized Hypergeometric Functions”, Lobachevskii J Math, 44:12 (2023), 5258  crossref
    7. S. Rahmani, H. Panahi, A. Najafizade, “An algebraic approach for the Dunkl–Killingbeck problem from the bi-confluent Heun equation”, Mod. Phys. Lett. A, 38:06 (2023)  crossref
    8. Géza Lévai, “Potentials from the Polynomial Solutions of the Confluent Heun Equation”, Symmetry, 15:2 (2023), 461  crossref
    9. A. Ya. Kazakov, “Euler Integral Symmetries and the Asymptotics of the Monodromy for the Heun Equation”, J Math Sci, 277:4 (2023), 598  crossref
    10. Yu-Jie Chen, Yuan-Yuan Liu, Wen-Du Li, Wu-Sheng Dai, “Solving Eigenproblem by Duality Transform”, SSRN Journal, 2022  crossref
    11. Shi-Lin Li, Yu-Jie Chen, Yuan-Yuan Liu, Wen-Du Li, Wu-Sheng Dai, “Solving eigenproblem by duality transform”, Annals of Physics, 443 (2022), 168962  crossref
    12. Primitivo B. Acosta-Humánez, Mourad E. H. Ismail, Nasser Saad, “Sextic anharmonic oscillators and Heun differential equations”, Eur. Phys. J. Plus, 137:7 (2022)  crossref
    13. G. Levai, “Pt-symmetric potentials from the confluent Heun equation”, Entropy, 23:1 (2021), 68  crossref  mathscinet  isi
    14. Sh.-L. Li, Yu.-Yu. Liu, W.-D. Li, W.-Sh. Dai, “Scalar field in reissner-nordstrom spacetime: bound state and scattering state (with appendix on eliminating oscillation in partial sum approximation of periodic function)”, Ann. Phys., 432 (2021), 168578  crossref  mathscinet  isi
    15. Adama S.H., Ongodo D.N., Zarma A., Ema'a J. M. Ema'a, Abiama P.E., Ben-Bolie G.H., “Bohr Hamiltonian of triaxial nuclei using Morse plus screened Kratzer potentials with the extended Nikiforov-Uvarov method”, Int. J. Mod. Phys. E, 30:12 (2021), 2150105  crossref  isi
    16. J. D. M. de Lima, E. Gomes, F. F. da Silva Filho, F. Moraes, R. Teixeira, “Geometric effects on the electronic structure of curved nanotubes and curved graphene: the case of the helix, catenary, helicoid, and catenoid”, Eur. Phys. J. Plus, 136:5 (2021), 551  crossref  isi  scopus
    17. Jacek Karwowski, Henryk A. Witek, Progress in Theoretical Chemistry and Physics, 33, Advances in Methods and Applications of Quantum Systems in Chemistry, Physics, and Biology, 2021, 43  crossref
    18. A. Ya. Kazakov, “Integralnaya simmetriya Eilera i asimptotika monodromii dlya uravnenii Goina”, Matematicheskie voprosy teorii rasprostraneniya voln. 50, Posvyaschaetsya devyanostoletiyu Vasiliya Mikhailovicha BABIChA, Zap. nauchn. sem. POMI, 493, POMI, SPb., 2020, 186–199  mathnet
    19. Q. Dong, H. I. Garcia Hernandez, G.-H. Sun, M. Toutounji, Sh.-H. Dong, “Exact solutions of the harmonic oscillator plus non-polynomial interaction”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 476:2241 (2020), 20200050  crossref  mathscinet  isi
    20. A. E. Sitnitsky, “Calculation of ir absorption intensities for hydrogen bond from exactly solvable Schrodinger equation”, J. Mol. Spectrosc., 372 (2020), 111347  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:680
    Full-text PDF :291
    References:72
    First page:47
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025