Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 188, Number 1, Pages 20–35
DOI: https://doi.org/10.4213/tmf9023
(Mi tmf9023)
 

This article is cited in 47 scientific papers (total in 47 papers)

Schrödinger potentials solvable in terms of the confluent Heun functions

A. M. Ishkhanyanabc

a Institute for Physical Research,, National Academy of Sciences of Armenia, Ashtarak, Armenia
b Armenian State Pedagogical University, Yerevan, Armenia
c Institute of Physics and Technology, National Research Tomsk Polytechnic University, Tomsk, Russia
References:
Abstract: We show that if the potential is proportional to an energy-independent continuous parameter, then there exist 15 choices for the coordinate transformation that provide energy-independent potentials whose shape is independent of that parameter and for which the one-dimensional stationary Schrödinger equation is solvable in terms of the confluent Heun functions. All these potentials are also energy-independent and are determined by seven parameters. Because the confluent Heun equation is symmetric under transposition of its regular singularities, only nine of these potentials are independent. Five of the independent potentials are different generalizations of either a hypergeometric or a confluent hypergeometric classical potential, one potential as special cases includes potentials of two hypergeometric types (the Morse confluent hypergeometric and the Eckart hypergeometric potentials), and the remaining three potentials include five-parameter conditionally integrable confluent hypergeometric potentials. Not one of the confluent Heun potentials, generally speaking, can be transformed into any other by a parameter choice.
Keywords: stationary Schrödinger equation, integrable potential, confluent Heun equation.
Funding agency Grant number
State Committee on Science of the Ministry of Education and Science of the Republic of Armenia 13RB-052
15T-1C323
This research was performed within the scope of the International Associated Laboratory (CNRS-France & SCS-Armenia) IRMAS and was supported by the Armenian State Committee of Science (SCS Grant Nos. 13RB-052 and 15T-1C323) and the project "Leading Research Universities of Russia" (Grant No. FTI_120_2014 Tomsk Polytechnic University).
Received: 12.08.2015
Revised: 23.10.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 188, Issue 1, Pages 980–993
DOI: https://doi.org/10.1134/S0040577916070023
Bibliographic databases:
Document Type: Article
PACS: 03.65.-w, 03.65.Ge, 02.30.Ik, 02.30.Gp, 02.90.+p
Language: Russian
Citation: A. M. Ishkhanyan, “Schrödinger potentials solvable in terms of the confluent Heun functions”, TMF, 188:1 (2016), 20–35; Theoret. and Math. Phys., 188:1 (2016), 980–993
Citation in format AMSBIB
\Bibitem{Ish16}
\by A.~M.~Ishkhanyan
\paper Schr\"odinger potentials solvable in terms of the~confluent Heun
functions
\jour TMF
\yr 2016
\vol 188
\issue 1
\pages 20--35
\mathnet{http://mi.mathnet.ru/tmf9023}
\crossref{https://doi.org/10.4213/tmf9023}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3535398}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...188..980I}
\elib{https://elibrary.ru/item.asp?id=26414449}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 188
\issue 1
\pages 980--993
\crossref{https://doi.org/10.1134/S0040577916070023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380653700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980511819}
Linking options:
  • https://www.mathnet.ru/eng/tmf9023
  • https://doi.org/10.4213/tmf9023
  • https://www.mathnet.ru/eng/tmf/v188/i1/p20
  • This publication is cited in the following 47 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:650
    Full-text PDF :272
    References:65
    First page:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024