Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 187, Number 1, Pages 3–11
DOI: https://doi.org/10.4213/tmf9047
(Mi tmf9047)
 

This article is cited in 18 scientific papers (total in 18 papers)

Are there pp-adic knot invariants?

A. Yu. Morozovabc

a National Research Nuclear University MEPhI, Moscow, Russia
b Institute for Theoretical and Experimental Physics, Moscow, Russia
c Institute for Information Transmission Problems, RAS, Moscow, Russia
References:
Abstract: We suggest using the Hall–Littlewood version of the Rosso–Jones formula to define the germs of pp-adic HOMFLY-PT polynomials for torus knots [m,n][m,n] as coefficients of superpolynomials in a qq-expansion. In this form, they have at least the [m,n][n,m][m,n][n,m] topological invariance. This opens a new possibility to interpret superpolynomials as pp-adic deformations of HOMFLY polynomials and poses a question of generalizing to other knot families, which is a substantial problem for several branches of modern theory.
Keywords: knot polynomial, pp-adic analysis, pp-adic string.
Funding agency Grant number
Russian Science Foundation 14-50-00150
This work was performed at the Kharkevich Institute for Information Transmission Problems and was funded by the Russian Science Foundation (Grant No. 14-50-00150)
Received: 18.09.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 187, Issue 1, Pages 447–454
DOI: https://doi.org/10.1134/S0040577916040012
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Yu. Morozov, “Are there pp-adic knot invariants?”, TMF, 187:1 (2016), 3–11; Theoret. and Math. Phys., 187:1 (2016), 447–454
Citation in format AMSBIB
\Bibitem{Mor16}
\by A.~Yu.~Morozov
\paper Are there $p$-adic knot invariants?
\jour TMF
\yr 2016
\vol 187
\issue 1
\pages 3--11
\mathnet{http://mi.mathnet.ru/tmf9047}
\crossref{https://doi.org/10.4213/tmf9047}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507519}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...187..447M}
\elib{https://elibrary.ru/item.asp?id=25865540}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 187
\issue 1
\pages 447--454
\crossref{https://doi.org/10.1134/S0040577916040012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376274300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969771450}
Linking options:
  • https://www.mathnet.ru/eng/tmf9047
  • https://doi.org/10.4213/tmf9047
  • https://www.mathnet.ru/eng/tmf/v187/i1/p3
  • This publication is cited in the following 18 articles:
    1. E. Lanina, A. Morozov, “Defect and degree of the Alexander polynomial”, Eur. Phys. J. C, 82:11 (2022)  crossref
    2. A. Yu. Morozov, “KNTZ trick from arborescent calculus and the structure of differential expansion”, Theoret. and Math. Phys., 204:2 (2020), 993–1019  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. L. Bishler, A. Morozov, “Perspectives of differential expansion”, Phys. Lett. B, 808 (2020), 135639  crossref  mathscinet  isi
    4. A. Morozov, “Pentad and triangular structures behind the Racah matrices”, Eur. Phys. J. Plus, 135:2 (2020)  crossref  isi
    5. A. Morozov, “On exclusive Racah matrices (s)over-bar for rectangular representations”, Phys. Lett. B, 793 (2019), 116–125  crossref  mathscinet  isi  scopus
    6. A. Morozov, “Extension of kntz trick to non-rectangular representations”, Phys. Lett. B, 793 (2019), 464–468  crossref  mathscinet  isi
    7. A. Anokhina, A. Morozov, A. Popolitov, “Nimble evolution for pretzel khovanov polynomials”, Eur. Phys. J. C, 79:10 (2019)  crossref  isi  scopus
    8. A. Morozov, “Generalized hypergeometric series for Racah matrices in rectangular representations”, Mod. Phys. Lett. A, 33:4 (2018), 1850020  crossref  mathscinet  zmath  isi  scopus
    9. A. Morozov, “Homfly for twist knots and exclusive Racah matrices inrepresentation [333]”, Phys. Lett. B, 778 (2018), 426–434  crossref  zmath  isi  scopus
    10. A. Morozov, “Factorization of differential expansion for non-rectangular representations”, Mod. Phys. Lett. A, 33:12 (2018), 1850062  crossref  mathscinet  zmath  isi  scopus
    11. A. Anokhina, A. Morozov, “Are Khovanov-Rozansky polynomials consistent with evolution in the space of knots?”, J. High Energy Phys., 2018, no. 4, 066  crossref  mathscinet  isi  scopus
    12. A. Morozov, “Knot polynomials for twist satellites”, Phys. Lett. B, 782 (2018), 104–111  crossref  mathscinet  isi  scopus
    13. A. Morozov, “On moduli space of symmetric orthogonal matrices and exclusive Racah matrix ¯S¯¯¯¯S for representation R=[3,1]R=[3,1] with multiplicities”, Phys. Lett. B, 766 (2017), 291–300  crossref  isi  scopus
    14. Ya. A. Kononov, A. Yu. Morozov, “Rectangular superpolynomials for the figure-eight knot 4141”, Theoret. and Math. Phys., 193:2 (2017), 1630–1646  mathnet  crossref  crossref  adsnasa  isi  elib
    15. B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, E. I. Zelenov, “pp-Adic mathematical physics: the first 30 years”, p-Adic Numbers Ultrametric Anal. Appl., 9:2 (2017), 87–121  crossref  mathscinet  zmath  isi  scopus
    16. Ya. Kononov, A. Morozov, “On rectangular HOMFLY for twist knots”, Mod. Phys. Lett. A, 31:38 (2016), 1650223  crossref  mathscinet  zmath  isi  elib  scopus
    17. A. Morozov, “Differential expansion and rectangular HOMFLY for the figure eight knot”, Nucl. Phys. B, 911 (2016), 582–605  crossref  zmath  isi  elib  scopus
    18. A. Mironov, A. Morozov, A. Morozov, A. Sleptsov, “HOMFLY polynomials in representation [3, 1] for 3-strand braids”, J. High Energy Phys., 2016, no. 9, 134  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:622
    Full-text PDF :190
    References:83
    First page:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025