Abstract:
We consider a nonlocal Darboux transformation of the two-dimensional stationary Schrödinger equation and establish its relation to the Moutard transformation. We show that the Moutard transformation is a special case of the nonlocal Darboux transformation and obtain new examples of solvable two-dimensional stationary Schrödinger operators with smooth potentials as an application of the nonlocal Darboux transformation.
Citation:
A. G. Kudryavtsev, “Nonlocal Darboux transformation of the two-dimensional stationary
Schrödinger equation and its relation to the Moutard transformation”, TMF, 187:1 (2016), 12–20; Theoret. and Math. Phys., 187:1 (2016), 455–462
\Bibitem{Kud16}
\by A.~G.~Kudryavtsev
\paper Nonlocal Darboux transformation of the~two-dimensional stationary
Schr\"odinger equation and its relation to the~Moutard transformation
\jour TMF
\yr 2016
\vol 187
\issue 1
\pages 12--20
\mathnet{http://mi.mathnet.ru/tmf8942}
\crossref{https://doi.org/10.4213/tmf8942}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507520}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...187..455K}
\elib{https://elibrary.ru/item.asp?id=25865546}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 187
\issue 1
\pages 455--462
\crossref{https://doi.org/10.1134/S0040577916040024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376274300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969769448}
Linking options:
https://www.mathnet.ru/eng/tmf8942
https://doi.org/10.4213/tmf8942
https://www.mathnet.ru/eng/tmf/v187/i1/p12
This publication is cited in the following 5 articles:
A. G. Kudryavtsev, “On the twofold Moutard transformation of the stationary Schrгöinger equation with axial symmetry”, JETP Letters, 119:7 (2024), 534–537
Yan Sun, Juan-Juan Wu, Xiao-Yong Wen, “Bifurcation, Traveling Wave Solutions and Dynamical Analysis in the $(2+1)$-Dimensional Extended Vakhnenko–Parkes Equation”, J Nonlinear Math Phys, 31:1 (2024)
A. G. Kudryavtsev, “On the nonlocal darboux transformation for time-independent axially symmetric Schrödinger and Helmholtz equations”, JETP Letters, 113:6 (2021), 409–412
A. G. Kudryavtsev, “Exact solutions of the time-independent axially symmetric Schrödinger equation”, JETP Letters, 111:2 (2020), 126–128
N. Liu, “Optimal system and invariant solutions of a new akns equation with time-dependent coefficients”, Symmetry-Basel, 12:4 (2020), 522