Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 185, Number 2, Pages 272–288
DOI: https://doi.org/10.4213/tmf8982
(Mi tmf8982)
 

This article is cited in 3 scientific papers (total in 3 papers)

Cauchy–Jost function and hierarchy of integrable equations

M. Boitia, F. Pempinellia, A. K. Pogrebkovb

a EINSTEIN Consortium, Lecce, Italy
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Full-text PDF (447 kB) Citations (3)
References:
Abstract: We describe the properties of the Cauchy–Jost (also known as Cauchy–Baker–Akhiezer) function of the Kadomtsev–Petviashvili-II equation. Using the ˉ¯-method, we show that for this function, all equations of the Kadomtsev–Petviashvili-II hierarchy are given in a compact and explicit form, including equations for the Cauchy–Jost function itself, time evolutions of the Jost solutions, and evolutions of the potential of the heat equation.
Keywords: Cauchy–Jost function, KP-II equation, inverse problem.
Funding agency Grant number
Russian Science Foundation 14-50-00005
Sections 3, 4 and 5 of the article are performed by A. K. Pogrebkov, sections 1, 2 and 6 are performed by M. Boiti and F. Pempinelli. Investigation of A. K. Pogrebkov is carried out at the expense of the Russian Science Foundation (grant no. 14-50-00005) at Steklov Mathematical Institute of Russian Academy of Sciences.
Received: 30.04.2015
English version:
Theoretical and Mathematical Physics, 2015, Volume 185, Issue 2, Pages 1599–1613
DOI: https://doi.org/10.1007/s11232-015-0367-y
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. Boiti, F. Pempinelli, A. K. Pogrebkov, “Cauchy–Jost function and hierarchy of integrable equations”, TMF, 185:2 (2015), 272–288; Theoret. and Math. Phys., 185:2 (2015), 1599–1613
Citation in format AMSBIB
\Bibitem{BoiPemPog15}
\by M.~Boiti, F.~Pempinelli, A.~K.~Pogrebkov
\paper Cauchy--Jost function and hierarchy of integrable equations
\jour TMF
\yr 2015
\vol 185
\issue 2
\pages 272--288
\mathnet{http://mi.mathnet.ru/tmf8982}
\crossref{https://doi.org/10.4213/tmf8982}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438620}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...185.1599B}
\elib{https://elibrary.ru/item.asp?id=24850725}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 185
\issue 2
\pages 1599--1613
\crossref{https://doi.org/10.1007/s11232-015-0367-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366113400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949294353}
Linking options:
  • https://www.mathnet.ru/eng/tmf8982
  • https://doi.org/10.4213/tmf8982
  • https://www.mathnet.ru/eng/tmf/v185/i2/p272
  • This publication is cited in the following 3 articles:
    1. Wang X., Zhu J., Qiao Zh., “New Solutions to the Differential-Difference Kp Equation”, Appl. Math. Lett., 113 (2021), 106836  crossref  mathscinet  isi  scopus
    2. Andrei K. Pogrebkov, “Symmetries of the Hirota Difference Equation”, SIGMA, 13 (2017), 053, 14 pp.  mathnet  crossref  mathscinet
    3. M. Boiti, F. Pempinelli, A. K. Pogrebkov, “KPII: Cauchy-Jost ffunction, Darboux transformations and totally nonnegative matrices”, J. Phys. A-Math. Theor., 50:30 (2017), 304001  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:452
    Full-text PDF :158
    References:58
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025