Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 185, Number 2, Pages 252–271
DOI: https://doi.org/10.4213/tmf8835
(Mi tmf8835)
 

This article is cited in 15 scientific papers (total in 15 papers)

Notion of blowup of the solution set of differential equations and averaging of random semigroups

L. S. Efremovaa, V. Zh. Sakbaevb

a Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Oblast, Russia
References:
Abstract: We propose a unique approach to studying the violation of the well-posedness of initial boundary-value problems for differential equations. The blowup of the set of solutions of a problem for a differential equation is defined as a discontinuity of a multivalued map associating an initial boundary-value problem with the set of solutions of this problem. We show that such a definition not only describes effects of the solution destruction or its nonuniqueness but also permits prescribing a procedure for extending the solution through the singularity origination instant by using an appropriate random process. Considering the initial boundary-value problems whose solution sets admit singularities of the blowup type and a neighborhood of these problems in the space of problems permits associating the initial problem with the set of limit points of a sequence of solutions of the approximating problems. Endowing the space of problems with the structure of a space with measure, we obtain a random semigroup generated by the initial problem. We study the properties of the mathematical expectations (means) of a random semigroup and their equivalence in the sense of Chernoff to semigroups with averaged generators.
Keywords: boundary-value problem, blowup, dynamical system, Ω-explosion, semigroup, random dynamical system, Chernoff's theorem, averaging.
Received: 05.12.2014
Revised: 13.04.2015
English version:
Theoretical and Mathematical Physics, 2015, Volume 185, Issue 2, Pages 1582–1598
DOI: https://doi.org/10.1007/s11232-015-0366-z
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: L. S. Efremova, V. Zh. Sakbaev, “Notion of blowup of the solution set of differential equations and averaging of random semigroups”, TMF, 185:2 (2015), 252–271; Theoret. and Math. Phys., 185:2 (2015), 1582–1598
Citation in format AMSBIB
\Bibitem{EfrSak15}
\by L.~S.~Efremova, V.~Zh.~Sakbaev
\paper Notion of blowup of the~solution set of differential equations and averaging of random semigroups
\jour TMF
\yr 2015
\vol 185
\issue 2
\pages 252--271
\mathnet{http://mi.mathnet.ru/tmf8835}
\crossref{https://doi.org/10.4213/tmf8835}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438619}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...185.1582E}
\elib{https://elibrary.ru/item.asp?id=24850721}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 185
\issue 2
\pages 1582--1598
\crossref{https://doi.org/10.1007/s11232-015-0366-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366113400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949238996}
Linking options:
  • https://www.mathnet.ru/eng/tmf8835
  • https://doi.org/10.4213/tmf8835
  • https://www.mathnet.ru/eng/tmf/v185/i2/p252
  • This publication is cited in the following 15 articles:
    1. V. Zh. Sakbaev, “Application of Banach limits to invariant measures of infinite-dimensional Hamiltonian flows”, Ann. Funct. Anal., 15:2 (2024)  crossref
    2. René Lozi, Vladimir Belykh, Jim Michael Cushing, Lyudmila Efremova, Saber Elaydi, Laura Gardini, Michał Misiurewicz, Eckehard Schöll, Galina Strelkova, “The paths of nine mathematicians to the realm of dynamical systems”, Journal of Difference Equations and Applications, 30:1 (2024), 1  crossref
    3. V. A. Glazatov, V. Zh. Sakbaev, “Measures on Hilbert space invariant with respect to Hamiltonian flows”, Ufa Math. J., 14:2 (2022), 3–21  mathnet  crossref
    4. V. Zh. Sakbaev, A. D. Shiryaeva, “Blow-Up of States in the Dynamics Given by the Schrödinger Equation with a Power-Law Nonlinearity in the Potential”, Diff Equat, 58:4 (2022), 497  crossref
    5. V. M. Busovikov, V. Zh. Sakbaev, “Sobolev spaces of functions on a Hilbert space endowed with a translation-invariant measure and approximations of semigroups”, Izv. Math., 84:4 (2020), 694–721  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. V. Zh. Sakbaev, N. V. Tsoi, “Analogue of Chernoff Theorem For Cylindrical Pseudomeasures”, Lobachevskii J. Math., 41:12, SI (2020), 2369–2382  mathnet  crossref  mathscinet  isi
    7. A. D. Grekhneva, V. Zh. Sakbaev, “Dynamics of a set of quantum states generated by a nonlinear Liouville–von Neumann equation”, Comput. Math. Math. Phys., 60:8 (2020), 1337–1347  mathnet  crossref  crossref  mathscinet  isi  elib
    8. Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Feynman Formulas and the Law of Large Numbers for Random One-Parameter Semigroups”, Proc. Steklov Inst. Math., 306 (2019), 196–211  mathnet  crossref  crossref  mathscinet  isi  elib
    9. L. S. Efremova, A. D. Grekhneva, V. Zh. Sakbaev, “Phase flows generated by Cauchy problem for nonlinear Schrodinger equation and dynamical mappings of quantum states”, Lobachevskii J. Math., 40:10, SI (2019), 1455–1469  crossref  mathscinet  isi
    10. V. Zh. Sakbaev, “Averaging of random flows of linear and nonlinear maps”, European Conference - Workshop Nonlinear Maps and Applications, Journal of Physics Conference Series, 990, IOP Publishing Ltd, 2018, UNSP 012012  crossref  mathscinet  isi  scopus
    11. V. Zh. Sakbaev, “Transformation Semigroups of the Space of Functions That Are Square Integrable with respect to a Translation-Invariant Measure on a Banach Space”, J. Math. Sci. (N. Y.), 252:1 (2021), 72–89  mathnet  crossref  mathscinet
    12. L. S. Efremova, “Dynamics of skew products of interval maps”, Russian Math. Surveys, 72:1 (2017), 101–178  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. V. Zh. Sakbaev, “Averaging of random walks and shift-invariant measures on a Hilbert space”, Theoret. and Math. Phys., 191:3 (2017), 886–909  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    14. V. Zh. Sakbaev, “Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations”, J. Math. Sci. (N. Y.), 241:4 (2019), 469–500  mathnet  mathnet  crossref
    15. V. Zh. Sakbaev, “On the law of large numbers for compositions of independent random semigroups”, Russian Math. (Iz. VUZ), 60:10 (2016), 72–76  mathnet  crossref  mathscinet  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1169
    Full-text PDF :369
    References:166
    First page:177
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025