|
This article is cited in 2 scientific papers (total in 2 papers)
Finsler $N$-spinors with real components
A. V. Solov'ev Lomonosov Moscow State University,
Moscow, Russia, Faculty of Physics
Abstract:
We study the mathematical objects called Finsler $N$-spinors over the field $\mathbb{R}$ and construct the general algebraic theory of these objects. We show that the Finsler $N$-spinors over the field $\mathbb{R}$ generate two families of $N(N{+}1)/2$- and $N(N{-}1)/2$-dimensional flat pseudo-Finsler spaces. We generalize the epimorphism $SL(2,\mathbb{R})\to O^\uparrow_+(1,2)$ to the case of the group $SL(N,\mathbb{R})$. We consider the examples of Finsler $N$-spinors over the field $\mathbb{R}$ for $N=2,3$ in detail.
Keywords:
hyperspinor, Finsler $N$-spinor, pseudo-Finsler space, group $SL(N,\mathbb R)$.
Received: 29.10.2014 Revised: 05.02.2015
Citation:
A. V. Solov'ev, “Finsler $N$-spinors with real components”, TMF, 183:3 (2015), 359–371; Theoret. and Math. Phys., 183:3 (2015), 756–767
Linking options:
https://www.mathnet.ru/eng/tmf8812https://doi.org/10.4213/tmf8812 https://www.mathnet.ru/eng/tmf/v183/i3/p359
|
Statistics & downloads: |
Abstract page: | 453 | Full-text PDF : | 176 | References: | 58 | First page: | 30 |
|