|
This article is cited in 9 scientific papers (total in 9 papers)
Bäcklund transformations relating different Hamilton–Jacobi equations
A. P. Sozonov, A. V. Tsiganov St. Petersburg State University, St. Petersburg, Russia
Abstract:
We discuss one of the possible finite-dimensional analogues of
the general Bäcklund transformation relating different partial
differential equations. We show that different Hamilton–Jacobi
equations can be obtained from the same Lax matrix. We consider
Hénon–Heiles systems on the plane, Neumann and Chaplygin
systems on the sphere, and two integrable systems with
velocity-dependent potentials as examples.
Keywords:
general Bäcklund transformation, Hamilton–Jacobi equation, separation of variables, Lax matrix.
Received: 17.11.2014 Revised: 10.01.2015
Citation:
A. P. Sozonov, A. V. Tsiganov, “Bäcklund transformations relating different Hamilton–Jacobi equations”, TMF, 183:3 (2015), 372–387; Theoret. and Math. Phys., 183:3 (2015), 768–781
Linking options:
https://www.mathnet.ru/eng/tmf8820https://doi.org/10.4213/tmf8820 https://www.mathnet.ru/eng/tmf/v183/i3/p372
|
Statistics & downloads: |
Abstract page: | 589 | Full-text PDF : | 202 | References: | 71 | First page: | 30 |
|