Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 183, Number 2, Pages 254–273
DOI: https://doi.org/10.4213/tmf8800
(Mi tmf8800)
 

This article is cited in 16 scientific papers (total in 16 papers)

The Lagrangian structure of Calogero's goldfish model

U. P. Jairuk, S. Yoo-Kong, M. Tanasittikosol

Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi
References:
Abstract: From a Lax pair ansatz, we obtain the discrete-time rational Calogero goldfish system. The discrete-time Lagrangians of the system have a discrete-time 11-form structure similar to the Lagrangians in the discrete-time Calogero–Moser system and the discrete-time Ruijsenaars–Schneider system. We obtain the Lagrangian hierarchy for the system as a result of a two-step passage to the continuum limit. As expected, the continuous-time Lagrangian preserves the 1-form structure. We establish a connection with the Kadomtsev–Petviashvili lattice systems.
Keywords: Calogero's goldfish, multitime Lagrangian 1-forms, closure relation.
Funding agency Grant number
Thailand Research Fund (TRF) TRG5680081
Received: 07.10.2014
English version:
Theoretical and Mathematical Physics, 2015, Volume 183, Issue 2, Pages 665–683
DOI: https://doi.org/10.1007/s11232-015-0283-1
Bibliographic databases:
PACS: -
Language: Russian
Citation: U. P. Jairuk, S. Yoo-Kong, M. Tanasittikosol, “The Lagrangian structure of Calogero's goldfish model”, TMF, 183:2 (2015), 254–273; Theoret. and Math. Phys., 183:2 (2015), 665–683
Citation in format AMSBIB
\Bibitem{JaiYooTan15}
\by U.~P.~Jairuk, S.~Yoo-Kong, M.~Tanasittikosol
\paper The~Lagrangian structure of Calogero's goldfish model
\jour TMF
\yr 2015
\vol 183
\issue 2
\pages 254--273
\mathnet{http://mi.mathnet.ru/tmf8800}
\crossref{https://doi.org/10.4213/tmf8800}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399644}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...183..665J}
\elib{https://elibrary.ru/item.asp?id=23421747}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 183
\issue 2
\pages 665--683
\crossref{https://doi.org/10.1007/s11232-015-0283-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000355826000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84930667718}
Linking options:
  • https://www.mathnet.ru/eng/tmf8800
  • https://doi.org/10.4213/tmf8800
  • https://www.mathnet.ru/eng/tmf/v183/i2/p254
  • This publication is cited in the following 16 articles:
    1. U. Jairuk, S. Yoo-Kong, “One-parameter discrete-time Calogero–Moser system”, Theoret. and Math. Phys., 218:3 (2024), 357–369  mathnet  crossref  crossref  mathscinet  adsnasa
    2. Thanadon Kongkoom, Sikarin Yoo-Kong, “Quantum integrability: Lagrangian 1-form case”, Nuclear Physics B, 987 (2023), 116101  crossref
    3. Piensuk W., Yoo-Kong S., “Geodesic Compatibility: Goldfish Systems”, Rep. Math. Phys., 87:1 (2021), 45–58  crossref  mathscinet  isi
    4. Zeros of Polynomials and Solvable Nonlinear Evolution Equations, 2018, ix  crossref
    5. Zeros of Polynomials and Solvable Nonlinear Evolution Equations, 2018, 4  crossref
    6. Zeros of Polynomials and Solvable Nonlinear Evolution Equations, 2018, 34  crossref
    7. Zeros of Polynomials and Solvable Nonlinear Evolution Equations, 2018, 119  crossref
    8. Zeros of Polynomials and Solvable Nonlinear Evolution Equations, 2018, 143  crossref
    9. Zeros of Polynomials and Solvable Nonlinear Evolution Equations, 2018, 162  crossref
    10. Zeros of Polynomials and Solvable Nonlinear Evolution Equations, 2018, 1  crossref
    11. Zeros of Polynomials and Solvable Nonlinear Evolution Equations, 2018, 26  crossref
    12. Zeros of Polynomials and Solvable Nonlinear Evolution Equations, 2018, 110  crossref
    13. Zeros of Polynomials and Solvable Nonlinear Evolution Equations, 2018, 160  crossref
    14. U. Jairuk, M. Tanasittikosol, “On the Lagrangian 1-form structure of the hyperbolic Calogero - Moser system”, Rep. Math. Phys., 79:3 (2017), 299–330  crossref  mathscinet  zmath  isi
    15. K. Surawuttinack, S. Yoo-Kong, M. Tanasittikosol, “Multiplicative form of the Lagrangian”, Theoret. and Math. Phys., 189:3 (2016), 1693–1711  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    16. F. Calogero, “Three new classes of solvable N-body problems of goldfish type with many arbitrary coupling constants”, Symmetry-Basel, 8:7 (2016), 53  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:358
    Full-text PDF :145
    References:64
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025