Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 183, Number 2, Pages 222–253
DOI: https://doi.org/10.4213/tmf8780
(Mi tmf8780)
 

This article is cited in 3 scientific papers (total in 3 papers)

New method for constructing semi-invariants and integrals of the full symmetric $\mathfrak{sl}_n$ Toda lattice

A. S. Sorinab, Yu. B. Chernyakovca

a Joint Institute for Nuclear Research, Dubna, Moscow Oblast, Russia
b National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
c Institute for Theoretical and Experimental Physics, Moscow, Russia
Full-text PDF (667 kB) Citations (3)
References:
Abstract: We consider the full symmetric representation of the Lax operator matrix of the Toda lattice, which is known as the full symmetric Toda lattice. The phase space of this system is the generic orbit of the coadjoint action of the Borel subgroup $B^+_n$ of $SL_n(\mathbb R)$. This system is integrable. We propose a new method for constructing semi-invariants and integrals of the full symmetric Toda lattice. Using only the equations of motion for the Lax eigenvector matrix, we prove the existence of the semi-invariants that are Plücker coordinates in the corresponding projective spaces. We use these semi-invariants to construct the integrals. Our new approach provides simple exact formulas for the full set of independent semi-invariants and integrals expressed in terms of the Lax matrix and also in terms of its eigenvector and eigenvalue matrices of the full symmetric Toda lattice without using the chopping and Kostant procedures. We describe the structure of the additional integrals of motion as functions on the flag space modulo the Toda flows and show how the Plücker coordinates of different projective spaces define different families of the additional integrals.
Keywords: Liouville integrability, integral of motion, semi-invariant, full symmetric Toda lattice, flag space, noncommutative integrability, Lax representation.
Funding agency Grant number
Russian Foundation for Basic Research 11-02-01335_a
13-02-91330-NNIO_а
13-02-90602-Ar_a
12-02-00594
Federal Agency for Science and Innovations of Russian Federation 14.740.11.0347
Received: 19.08.2014
English version:
Theoretical and Mathematical Physics, 2015, Volume 183, Issue 2, Pages 637–664
DOI: https://doi.org/10.1007/s11232-015-0287-x
Bibliographic databases:
Language: Russian
Citation: A. S. Sorin, Yu. B. Chernyakov, “New method for constructing semi-invariants and integrals of the full symmetric $\mathfrak{sl}_n$ Toda lattice”, TMF, 183:2 (2015), 222–253; Theoret. and Math. Phys., 183:2 (2015), 637–664
Citation in format AMSBIB
\Bibitem{SorChe15}
\by A.~S.~Sorin, Yu.~B.~Chernyakov
\paper New method for constructing semi-invariants and integrals of the~full
symmetric $\mathfrak{sl}_n$ Toda lattice
\jour TMF
\yr 2015
\vol 183
\issue 2
\pages 222--253
\mathnet{http://mi.mathnet.ru/tmf8780}
\crossref{https://doi.org/10.4213/tmf8780}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399643}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...183..637S}
\elib{https://elibrary.ru/item.asp?id=23421746}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 183
\issue 2
\pages 637--664
\crossref{https://doi.org/10.1007/s11232-015-0287-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000355826000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84930641056}
Linking options:
  • https://www.mathnet.ru/eng/tmf8780
  • https://doi.org/10.4213/tmf8780
  • https://www.mathnet.ru/eng/tmf/v183/i2/p222
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:404
    Full-text PDF :190
    References:52
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024