Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 182, Number 2, Pages 231–255
DOI: https://doi.org/10.4213/tmf8772
(Mi tmf8772)
 

This article is cited in 22 scientific papers (total in 22 papers)

Darboux integrability of discrete two-dimensional Toda lattices

S. V. Smirnov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We prove the Darboux integrability of semidiscrete and discrete two-dimensional Toda lattices corresponding to simple Lie algebras of the A and C series.
Keywords: discrete Toda lattice, discrete exponential system, Darboux integrability, integral along characteristics.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-4833.2014.1
2010-220-01-077
Russian Foundation for Basic Research 14-01-00012_а
Received: 21.07.2014
English version:
Theoretical and Mathematical Physics, 2015, Volume 182, Issue 2, Pages 189–210
DOI: https://doi.org/10.1007/s11232-015-0257-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. V. Smirnov, “Darboux integrability of discrete two-dimensional Toda lattices”, TMF, 182:2 (2015), 231–255; Theoret. and Math. Phys., 182:2 (2015), 189–210
Citation in format AMSBIB
\Bibitem{Smi15}
\by S.~V.~Smirnov
\paper Darboux integrability of discrete two-dimensional Toda lattices
\jour TMF
\yr 2015
\vol 182
\issue 2
\pages 231--255
\mathnet{http://mi.mathnet.ru/tmf8772}
\crossref{https://doi.org/10.4213/tmf8772}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3370579}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...182..189S}
\elib{https://elibrary.ru/item.asp?id=23421713}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 182
\issue 2
\pages 189--210
\crossref{https://doi.org/10.1007/s11232-015-0257-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350668000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924359601}
Linking options:
  • https://www.mathnet.ru/eng/tmf8772
  • https://doi.org/10.4213/tmf8772
  • https://www.mathnet.ru/eng/tmf/v182/i2/p231
  • This publication is cited in the following 22 articles:
    1. I.T. Habibullin, A.U. Sakieva, “On integrable reductions of two-dimensional Toda-type lattices”, Partial Differential Equations in Applied Mathematics, 11 (2024), 100854  crossref
    2. M. N. Kuznetsova, I. T. Habibullin, A. R. Khakimova, “On the problem of classifying integrable chains with three independent variables”, Theoret. and Math. Phys., 215:2 (2023), 667–690  mathnet  crossref  crossref  mathscinet  adsnasa
    3. M. N. Kuznetsova, “Construction of localized particular solutions of chains with three independent variables”, Theoret. and Math. Phys., 216:2 (2023), 1158–1167  mathnet  crossref  crossref  mathscinet  adsnasa
    4. I. T. Habibullin, A. R. Khakimova, “On the classification of nonlinear integrable three-dimensional chains via characteristic Lie algebras”, Theoret. and Math. Phys., 217:1 (2023), 1541–1573  mathnet  crossref  crossref  mathscinet  adsnasa
    5. Sergey V Smirnov, “Integral preserving discretization of 2D Toda lattices”, J. Phys. A: Math. Theor., 56:26 (2023), 265204  crossref
    6. Ismagil T. Habibullin, Aigul R. Khakimova, Alfya U. Sakieva, “Miura-Type Transformations for Integrable Lattices in 3D”, Mathematics, 11:16 (2023), 3522  crossref
    7. I. T. Habibullin, A. R. Khakimova, “Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph”, Theoret. and Math. Phys., 213:2 (2022), 1589–1612  mathnet  crossref  crossref  mathscinet  adsnasa
    8. I. T. Habibullin, A. R. Khakimova, “Algebraic reductions of discrete equations of Hirota-Miwa type”, Ufa Math. J., 14:4 (2022), 113–126  mathnet  crossref  mathscinet
    9. D. V. Millionshchikov, S. V. Smirnov, “Characteristic algebras and integrable exponential systems”, Ufa Math. J., 13:2 (2021), 41–69  mathnet  crossref  isi
    10. Habibullin I.T. Kuznetsova M.N., “An Algebraic Criterion of the Darboux Integrability of Differential-Difference Equations and Systems”, J. Phys. A-Math. Theor., 54:50 (2021), 505201  crossref  mathscinet  isi
    11. Habibullin I.T. Khakimova A.R., “Characteristic Lie Algebras of Integrable Differential-Difference Equations in 3D”, J. Phys. A-Math. Theor., 54:29 (2021), 295202  crossref  mathscinet  isi
    12. I. T. Habibullin, M. N. Kuznetsova, “A classification algorithm for integrable two-dimensional lattices via Lie–Rinehart algebras”, Theoret. and Math. Phys., 203:1 (2020), 569–581  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    13. I. T. Habibullin, M. N. Kuznetsova, A. U. Sakieva, “Integrability conditions for two-dimensional Toda-like equations”, J. Phys. A-Math. Theor., 53:39 (2020), 395203  crossref  mathscinet  isi
    14. I. Habibullin, A. Khakimova, “Integrable boundary conditions for the Hirota-Miwa equation and lie algebras”, J. Nonlinear Math. Phys., 27:3 (2020), 393–413  crossref  mathscinet  isi
    15. S. V. Smirnov, “Factorization of Darboux–Laplace transformations for discrete hyperbolic operators”, Theoret. and Math. Phys., 199:2 (2019), 621–636  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    16. Ch. Athorne, H. Yilmaz, “Twisted Laplace maps”, J. Phys. A-Math. Theor., 52:22 (2019), 225201  crossref  mathscinet  isi
    17. I. T. Habibullin, A. R. Khakimova, “Discrete exponential type systems on a quad graph, corresponding to the affine lie algebras a(n)(-1)((1) )”, J. Phys. A-Math. Theor., 52:36 (2019), 365202  crossref  mathscinet  isi
    18. W. Fu, “Direct linearisation of the discrete-time two-dimensional Toda lattices”, J. Phys. A-Math. Theor., 51:33 (2018), 334001  crossref  mathscinet  isi  scopus
    19. M. N. Poptsova, I. T. Habibullin, “Algebraic properties of quasilinear two-dimensional lattices connected with integrability”, Ufa Math. J., 10:3 (2018), 86–105  mathnet  crossref  isi
    20. Ismagil Habibullin, Mariya Poptsova, “Classification of a Subclass of Two-Dimensional Lattices via Characteristic Lie Rings”, SIGMA, 13 (2017), 073, 26 pp.  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:644
    Full-text PDF :257
    References:86
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025