Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 182, Number 2, Pages 256–276
DOI: https://doi.org/10.4213/tmf8657
(Mi tmf8657)
 

This article is cited in 16 scientific papers (total in 16 papers)

Equivalence of second-order ordinary differential equations to Painlevé equations

Yu. Yu. Bagderina

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa, Russia
References:
Abstract: All Painlevé equations except the first belong to one type of equations. In terms of invariants of these equations, we obtain criteria for the equivalence to the second Painlevé equation and to equation XXXIV in the list of 50 equations without movable critical points. We find new necessary conditions of equivalence for the third and fourth and also special cases of the fifth and sixth Painlevé equations. We compare the invariants we use with invariants previously introduced by other authors and compare the obtained results.
Keywords: Painlevé equation, equivalence, invariant.
Funding agency Grant number
Russian Science Foundation 14-11-00078
Received: 17.02.2014
Revised: 11.08.2014
English version:
Theoretical and Mathematical Physics, 2015, Volume 182, Issue 2, Pages 211–230
DOI: https://doi.org/10.1007/s11232-015-0258-2
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. Yu. Bagderina, “Equivalence of second-order ordinary differential equations to Painlevé equations”, TMF, 182:2 (2015), 256–276; Theoret. and Math. Phys., 182:2 (2015), 211–230
Citation in format AMSBIB
\Bibitem{Bag15}
\by Yu.~Yu.~Bagderina
\paper Equivalence of second-order ordinary differential equations to Painlev\'e equations
\jour TMF
\yr 2015
\vol 182
\issue 2
\pages 256--276
\mathnet{http://mi.mathnet.ru/tmf8657}
\crossref{https://doi.org/10.4213/tmf8657}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3370580}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...182..211B}
\elib{https://elibrary.ru/item.asp?id=23421715}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 182
\issue 2
\pages 211--230
\crossref{https://doi.org/10.1007/s11232-015-0258-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350668000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84923809731}
Linking options:
  • https://www.mathnet.ru/eng/tmf8657
  • https://doi.org/10.4213/tmf8657
  • https://www.mathnet.ru/eng/tmf/v182/i2/p256
  • This publication is cited in the following 16 articles:
    1. Dmitry I. Sinelshchikov, “Linearizabiliy and Lax representations for cubic autonomous and non-autonomous nonlinear oscillators”, Physica D: Nonlinear Phenomena, 448 (2023), 133721  crossref
    2. Dmitry I. Sinelshchikov, Partha Guha, A. Ghose Choudhury, “Lax representation and a quadratic rational first integral for second-order differential equations with cubic nonlinearity”, Communications in Nonlinear Science and Numerical Simulation, 112 (2022), 106553  crossref
    3. Yu. Yu. Bagderina, “Point equivalence of second-order ordinary differential equations to the fifth Painlevé equation with one and two nonzero parameters”, Theoret. and Math. Phys., 202:3 (2020), 295–308  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. Peter A. Clarkson, “Open Problems for Painlevé Equations”, SIGMA, 15 (2019), 006, 20 pp.  mathnet  crossref
    5. P. V. Bibikov, “Classification of second order linear ordinary differential equations with rational coefficients”, Lobachevskii J. Math., 40:1, SI (2019), 14–23  crossref  mathscinet  isi  scopus
    6. D. I. Sinelshchikov, “On first integrals for some non-autonomous lienard-type equations”, International Conference on Numerical Analysis and Applied Mathematics (Icnaam-2018), AIP Conf. Proc., 2116, eds. T. Simos, C. Tsitouras, Amer. Inst. Phys., 2019, 270009  crossref  isi  scopus
    7. Yu. Yu. Bagderina, “Necessary conditions of point equivalence of second-order odes to the fifth Painleve equation”, Vii International Conference Problems of Mathematical Physics and Mathematical Modelling, Journal of Physics Conference Series, 1205, IOP Publishing Ltd, 2019, 012004  crossref  mathscinet  isi
    8. P. Bibikov, A. Malakhov, “On classification problems in the theory of differential equations: algebra plus geometry”, Publ. Inst. Math.-Beograd, 103:117 (2018), 33–52  crossref  mathscinet  isi  scopus
    9. I. Kossovskiy, D. Zaitsev, “Normal form for second order differential equations”, J. Dyn. Control Syst., 24:4 (2018), 541–562  crossref  mathscinet  isi  scopus
    10. Yu. Yu. Bagderina, “Necessary conditions of point equivalence of second-order ODEs to the sixth Painlevé equation”, J. Math. Sci. (N. Y.), 242:5 (2019), 595–607  mathnet  crossref
    11. P. V. Bibikov, “On Lie's problem and differential invariants of ODEs y=F(x,y)”, Funct. Anal. Appl., 51:4 (2017), 255–262  mathnet  crossref  crossref  isi  elib
    12. P. Bibikov, A. Malakhov, “On Lie problem and differential invariants for the subgroup of the plane Cremona group”, J. Geom. Phys., 121 (2017), 72–82  crossref  mathscinet  zmath  isi  scopus
    13. P. V. Bibikov, “Generalized Lie problem and differential invariants for the third order ODEs”, Lobachevskii J. Math., 38:4, SI (2017), 622–629  crossref  mathscinet  zmath  isi  scopus
    14. Yu. Yu. Bagderina, “Invariants of a family of scalar second-order ordinary differential equations for Lie symmetries and first integrals”, J. Phys. A-Math. Theor., 49:15 (2016), 155202  crossref  mathscinet  zmath  isi  elib  scopus
    15. Yu. Yu. Bagderina, “Equivalence of second-order ODEs to equations of first Painlevé equation type”, Ufa Math. J., 7:1 (2015), 19–30  mathnet  crossref  mathscinet  isi  elib
    16. Yu. Yu. Bagderina, N. N. Tarkhanov, “Solution of the equivalence problem for the third Painlevé equation”, J. Math. Phys., 56:1 (2015), 013507  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:473
    Full-text PDF :187
    References:67
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025