Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 181, Number 3, Pages 436–448
DOI: https://doi.org/10.4213/tmf8746
(Mi tmf8746)
 

Geometric aspects of the holographic duality

D. V. Bykovab

a Steklov Mathematical Institute, RAS, Moscow, Russia
b Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Potsdam-Golm, Germany
References:
Abstract: We briefly survey results related to applying the AdS/CFT correspondence to $\mathcal{N}=1$ supersymmetric models. These models, on one hand, are closest to realistic models of elementary particle physics and, on the other hand, are amenable to quantitative analysis using the AdS/CFT correspondence. Furthermore, they are related to such remarkable geometric objects as Sasakian manifolds and Ricci-flat cones, on which we particularly focus.
Keywords: AdS/CFT correspondence, supersymmetry, Sasakian manifold, del Pezzo surface.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00695_a
13-01-12405 офи_м
Ministry of Education and Science of the Russian Federation MK-2510.2014.1
Received: 24.06.2014
English version:
Theoretical and Mathematical Physics, 2014, Volume 181, Issue 3, Pages 1499–1508
DOI: https://doi.org/10.1007/s11232-014-0230-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. V. Bykov, “Geometric aspects of the holographic duality”, TMF, 181:3 (2014), 436–448; Theoret. and Math. Phys., 181:3 (2014), 1499–1508
Citation in format AMSBIB
\Bibitem{Byk14}
\by D.~V.~Bykov
\paper Geometric aspects of the~holographic duality
\jour TMF
\yr 2014
\vol 181
\issue 3
\pages 436--448
\mathnet{http://mi.mathnet.ru/tmf8746}
\crossref{https://doi.org/10.4213/tmf8746}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344547}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...181.1499B}
\elib{https://elibrary.ru/item.asp?id=23421674}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 181
\issue 3
\pages 1499--1508
\crossref{https://doi.org/10.1007/s11232-014-0230-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000347702500002}
\elib{https://elibrary.ru/item.asp?id=24029300}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920594127}
Linking options:
  • https://www.mathnet.ru/eng/tmf8746
  • https://doi.org/10.4213/tmf8746
  • https://www.mathnet.ru/eng/tmf/v181/i3/p436
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:496
    Full-text PDF :259
    References:58
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024