Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 181, Number 3, Pages 421–435
DOI: https://doi.org/10.4213/tmf8791
(Mi tmf8791)
 

This article is cited in 29 scientific papers (total in 29 papers)

A matrix model for hypergeometric Hurwitz numbers

J. Ambjørnab, L. O. Chekhovcde

a Niels Bohr Institute, Copenhagen University, Copenhagen Denmark
b IMAPP, Radboud University, Nijmengen, The Netherlands
c Steklov Mathematical Institute, RAS, Moscow, Russia
d Laboratoire Poncelet, Independent University of Moscow, Moscow, Russia
e Center for Quantum Geometry of Moduli Spaces, Århus University, Århus, Denmark
References:
Abstract: We present multimatrix models that are generating functions for the numbers of branched covers of the complex projective line ramified over $n$ fixed points $z_i$, $i=1,\dots,n$ (generalized Grothendieck's dessins d'enfants) of fixed genus, degree, and ramification profiles at two points $z_1$ and $z_n$. We sum over all possible ramifications at the other $n-2$ points with a fixed length of the profile at $z_2$ and with a fixed total length of profiles at the remaining $n-3$ points. All these models belong to a class of hypergeometric Hurwitz models and are therefore tau functions of the Kadomtsev–Petviashvili hierarchy. In this case, we can represent the obtained model as a chain of matrices with a (nonstandard) nearest-neighbor interaction of the type $\operatorname{tr} M_iM_{i+1}^{-1}$. We describe the technique for evaluating spectral curves of such models, which opens the way for obtaining $1/N^2$-expansions of these models using the topological recursion method. These spectral curves turn out to be algebraic.
Keywords: Hurwitz number, random complex matrix, Kadomtsev–Petviashvili hierarchy, matrix chain, bipartite graph, spectral curve.
Received: 11.09.2014
English version:
Theoretical and Mathematical Physics, 2014, Volume 181, Issue 3, Pages 1486–1498
DOI: https://doi.org/10.1007/s11232-014-0229-z
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: J. Ambjørn, L. O. Chekhov, “A matrix model for hypergeometric Hurwitz numbers”, TMF, 181:3 (2014), 421–435; Theoret. and Math. Phys., 181:3 (2014), 1486–1498
Citation in format AMSBIB
\Bibitem{AmbChe14}
\by J.~Ambj{\o}rn, L.~O.~Chekhov
\paper A~matrix model for hypergeometric Hurwitz numbers
\jour TMF
\yr 2014
\vol 181
\issue 3
\pages 421--435
\mathnet{http://mi.mathnet.ru/tmf8791}
\crossref{https://doi.org/10.4213/tmf8791}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344546}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...181.1486A}
\elib{https://elibrary.ru/item.asp?id=23421671}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 181
\issue 3
\pages 1486--1498
\crossref{https://doi.org/10.1007/s11232-014-0229-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000347702500001}
\elib{https://elibrary.ru/item.asp?id=24029369}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920615878}
Linking options:
  • https://www.mathnet.ru/eng/tmf8791
  • https://doi.org/10.4213/tmf8791
  • https://www.mathnet.ru/eng/tmf/v181/i3/p421
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:514
    Full-text PDF :162
    References:44
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024