Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 180, Number 1, Pages 17–34
DOI: https://doi.org/10.4213/tmf8663
(Mi tmf8663)
 

This article is cited in 20 scientific papers (total in 20 papers)

Discrete equation on a square lattice with a nonstandard structure of generalized symmetries

R. N. Garifullina, A. V. Mikhailovb, R. I. Yamilova

a Institute of Mathematics with Computing Center, Ufa Science Center, RAS, Ufa, Russia
b University of Leeds, Department of Applied Mathematics, Leeds, UK
References:
Abstract: We clarify the integrability nature of a recently found discrete equation on the square lattice with a nonstandard symmetry structure. We find its $L$$A$ pair and show that it is also nonstandard. For this discrete equation, we construct the hierarchies of both generalized symmetries and conservation laws. This equation yields two integrable systems of hyperbolic type. The hierarchies of generalized symmetries and conservation laws are also nonstandard compared with known equations in this class.
Keywords: discrete integrable equation, generalized symmetry, conservation law, $L$$A$ pair.
Received: 18.02.2014
English version:
Theoretical and Mathematical Physics, 2014, Volume 180, Issue 1, Pages 765–780
DOI: https://doi.org/10.1007/s11232-014-0178-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: R. N. Garifullin, A. V. Mikhailov, R. I. Yamilov, “Discrete equation on a square lattice with a nonstandard structure of generalized symmetries”, TMF, 180:1 (2014), 17–34; Theoret. and Math. Phys., 180:1 (2014), 765–780
Citation in format AMSBIB
\Bibitem{GarMikYam14}
\by R.~N.~Garifullin, A.~V.~Mikhailov, R.~I.~Yamilov
\paper Discrete equation on a~square lattice with a~nonstandard structure of generalized symmetries
\jour TMF
\yr 2014
\vol 180
\issue 1
\pages 17--34
\mathnet{http://mi.mathnet.ru/tmf8663}
\crossref{https://doi.org/10.4213/tmf8663}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344492}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...180..765G}
\elib{https://elibrary.ru/item.asp?id=21826694}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 180
\issue 1
\pages 765--780
\crossref{https://doi.org/10.1007/s11232-014-0178-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000340457900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84905648714}
Linking options:
  • https://www.mathnet.ru/eng/tmf8663
  • https://doi.org/10.4213/tmf8663
  • https://www.mathnet.ru/eng/tmf/v180/i1/p17
  • This publication is cited in the following 20 articles:
    1. Vladimir Novikov, Jing Ping Wang, “Integrability of Nonabelian Differential–Difference Equations: The Symmetry Approach”, Commun. Math. Phys., 406:1 (2025)  crossref
    2. V. E. Adler, “3D consistency of negative flows”, Theoret. and Math. Phys., 221:2 (2024), 1836–1851  mathnet  crossref  crossref  adsnasa
    3. R. N. Garifullin, “Classification of semidiscrete equations of hyperbolic type. The case of third-order symmetries”, Theoret. and Math. Phys., 217:2 (2023), 1767–1776  mathnet  crossref  crossref  mathscinet  adsnasa
    4. Adler V.E., “Painleve Type Reductions For the Non-Abelian Volterra Lattices”, J. Phys. A-Math. Theor., 54:3 (2021), 035204  crossref  mathscinet  isi
    5. G. Gubbiotti, “Algebraic entropy of a class of five-point differential-difference equations”, Symmetry-Basel, 11:3 (2019), 432  crossref  mathscinet  isi
    6. R. N. Garifullin, G. Gubbiotti, R. I. Yamilov, “Integrable discrete autonomous quad-equations admitting, as generalized symmetries, known five-point differential-difference equations”, J. Nonlinear Math. Phys., 26:3 (2019), 333–357  crossref  mathscinet  isi
    7. R. N. Garifullin, R. I. Yamilov, “An unusual series of autonomous discrete integrable equations on a square lattice”, Theoret. and Math. Phys., 200:1 (2019), 966–984  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. R. N. Garifullin, R. I. Yamilov, D. Levi, “Classification of five-point differential-difference equations II”, J. Phys. A-Math. Theor., 51:6 (2018), 065204  crossref  mathscinet  zmath  isi  scopus
    9. V. E. Adler, “Integrable seven-point discrete equations and second-order evolution chains”, Theoret. and Math. Phys., 195:1 (2018), 513–528  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    10. I. T. Habibullin, A. R. Khakimova, “On the recursion operators for integrable equations”, J. Phys. A-Math. Theor., 51:42 (2018), 425202  crossref  mathscinet  isi  scopus
    11. P. Xenitidis, “Determining the symmetries of difference equations”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 474:2219 (2018), 20180340  crossref  mathscinet  isi  scopus
    12. R. N. Garifullin, R. I. Yamilov, “On the Integrability of a Lattice Equation with Two Continuum Limits”, J. Math. Sci. (N. Y.), 252:2 (2021), 283–289  mathnet  crossref  mathscinet
    13. Pavlos Xenitidis, “Deautonomizations of integrable equations and their reductions”, Journal of Integrable Systems, 3:1 (2018)  crossref
    14. R. N. Garifullin, R. I. Yamilov, D. Levi, “Classification of five-point differential-difference equations”, J. Phys. A-Math. Theor., 50:12 (2017), 125201  crossref  mathscinet  zmath  isi  scopus
    15. Ufa Math. J., 9:3 (2017), 158–164  mathnet  crossref  mathscinet  isi  elib  elib
    16. G. Gubbiotti, C. Scimiterna, D. Levi, “The non-autonomous YdKN equation and generalized symmetries of Boll equations”, J. Math. Phys., 58:5 (2017), 053507  crossref  mathscinet  zmath  isi  scopus
    17. V. E. Adler, “Integrable Möbius-invariant evolutionary lattices of second order”, Funct. Anal. Appl., 50:4 (2016), 257–267  mathnet  crossref  crossref  mathscinet  isi  elib
    18. A. V. Mikhailov, “Formal diagonalisation of Lax–Darboux schemes”, Model. i analiz inform. sistem, 22:6 (2015), 795–817  mathnet  crossref  mathscinet  elib
    19. R N Garifullin, I T Habibullin, R I Yamilov, “Peculiar symmetry structure of some known discrete nonautonomous equations”, J. Phys. A: Math. Theor., 48:23 (2015), 235201  crossref
    20. V. E. Adler, “Necessary integrability conditions for evolutionary lattice equations”, Theoret. and Math. Phys., 181:2 (2014), 1367–1382  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:573
    Full-text PDF :239
    References:83
    First page:125
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025