Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 180, Number 1, Pages 10–16
DOI: https://doi.org/10.4213/tmf8639
(Mi tmf8639)
 

This article is cited in 5 scientific papers (total in 5 papers)

Five-wave classical scattering matrix and integrable equations

V. E. Zakharovabc, A. V. Odesskiid, M. Cisterninoe, M. Onoratofe

a Lebedev Physical Institute, RAS, Moscow, Russia
b University of Arizona, Tucson, USA
c Novosibirsk State University, Novosibirsk, Russia
d Brock University, St. Catharines, Canada
e Dipartimento di Fisica, Università di Torino, Torino, Italy
f INFN, Sezione di Torino, Torino, Italy
Full-text PDF (380 kB) Citations (5)
References:
Abstract: We study the five-wave classical scattering matrix for nonlinear and dispersive Hamiltonian equations with a nonlinearity of the type $u\, \partial u/\partial x$. Our aim is to find the most general nontrivial form of the dispersion relation $\omega(k)$ for which the five-wave interaction scattering matrix is identically zero on the resonance manifold. As could be expected, the matrix in one dimension is zero for the Korteweg–de Vries equation, the Benjamin–Ono equation, and the intermediate long-wave equation. In two dimensions, we find a new equation that satisfies our requirement.
Keywords: integrability, intermediate long-wave equation, Korteweg–de Vries equation, Benjamin–Ono equation, scattering matrix.
Received: 13.01.2014
English version:
Theoretical and Mathematical Physics, 2014, Volume 180, Issue 1, Pages 759–764
DOI: https://doi.org/10.1007/s11232-014-0177-7
Bibliographic databases:
Language: Russian
Citation: V. E. Zakharov, A. V. Odesskii, M. Cisternino, M. Onorato, “Five-wave classical scattering matrix and integrable equations”, TMF, 180:1 (2014), 10–16; Theoret. and Math. Phys., 180:1 (2014), 759–764
Citation in format AMSBIB
\Bibitem{ZakOdeCis14}
\by V.~E.~Zakharov, A.~V.~Odesskii, M.~Cisternino, M.~Onorato
\paper Five-wave classical scattering matrix and integrable equations
\jour TMF
\yr 2014
\vol 180
\issue 1
\pages 10--16
\mathnet{http://mi.mathnet.ru/tmf8639}
\crossref{https://doi.org/10.4213/tmf8639}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344491}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...180..759Z}
\elib{https://elibrary.ru/item.asp?id=21826693}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 180
\issue 1
\pages 759--764
\crossref{https://doi.org/10.1007/s11232-014-0177-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000340457900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84905641883}
Linking options:
  • https://www.mathnet.ru/eng/tmf8639
  • https://doi.org/10.4213/tmf8639
  • https://www.mathnet.ru/eng/tmf/v180/i1/p10
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:505
    Full-text PDF :201
    References:80
    First page:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024