Abstract:
We prove the solvability of the multipoint Vallée Poussin (interpolation) problem for the kernel of a convolution operator in the case where the zeros of the characteristic function and nodal points (zeros of an entire function) are inside an angle.
Citation:
V. V. Napalkov, A. A. Nuyatov, “Multipoint Vallée Poussin problem for convolution operators with nodes defined inside an angle”, TMF, 180:2 (2014), 264–271; Theoret. and Math. Phys., 180:2 (2014), 983–989
\Bibitem{NapNuy14}
\by V.~V.~Napalkov, A.~A.~Nuyatov
\paper Multipoint Vall\'ee Poussin problem for convolution operators with nodes defined inside an~angle
\jour TMF
\yr 2014
\vol 180
\issue 2
\pages 264--271
\mathnet{http://mi.mathnet.ru/tmf8654}
\crossref{https://doi.org/10.4213/tmf8654}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344488}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...180..983N}
\elib{https://elibrary.ru/item.asp?id=22834519}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 180
\issue 2
\pages 983--989
\crossref{https://doi.org/10.1007/s11232-014-0193-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000341094400008}
\elib{https://elibrary.ru/item.asp?id=23984282}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906505283}
Linking options:
https://www.mathnet.ru/eng/tmf8654
https://doi.org/10.4213/tmf8654
https://www.mathnet.ru/eng/tmf/v180/i2/p264
This publication is cited in the following 3 articles:
S. G. Merzlyakov, S. V. Popenov, “Interpolation by sums of series of exponentials and global Cauchy problem for convolution operators”, Dokl. Math., 99:2 (2019), 149–151
S. G. Merzlyakov, S. V. Popenov, “Interpolation by series of exponential functions whose exponents are condensed in a certain direction”, J. Math. Sci. (N. Y.), 257:3 (2021), 334–352
S. G. Merzlyakov, S. V. Popenov, “Set of exponents for interpolation of exponential series by sums in all convex domains”, J. Math. Sci. (N. Y.), 245:1 (2020), 48–63