Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 180, Number 2, Pages 264–271
DOI: https://doi.org/10.4213/tmf8654
(Mi tmf8654)
 

This article is cited in 3 scientific papers (total in 3 papers)

Multipoint Vallée Poussin problem for convolution operators with nodes defined inside an angle

V. V. Napalkova, A. A. Nuyatovb

a Institute for Mathematics with Computation Center, Ufa Science Center, RAS, Ufa, Russia
b Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
Full-text PDF (363 kB) Citations (3)
References:
Abstract: We prove the solvability of the multipoint Vallée Poussin (interpolation) problem for the kernel of a convolution operator in the case where the zeros of the characteristic function and nodal points (zeros of an entire function) are inside an angle.
Keywords: convolution operator, multipoint Vallée Poussin problem, interpolation, Fisher pair.
Received: 13.02.2014
English version:
Theoretical and Mathematical Physics, 2014, Volume 180, Issue 2, Pages 983–989
DOI: https://doi.org/10.1007/s11232-014-0193-7
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Napalkov, A. A. Nuyatov, “Multipoint Vallée Poussin problem for convolution operators with nodes defined inside an angle”, TMF, 180:2 (2014), 264–271; Theoret. and Math. Phys., 180:2 (2014), 983–989
Citation in format AMSBIB
\Bibitem{NapNuy14}
\by V.~V.~Napalkov, A.~A.~Nuyatov
\paper Multipoint Vall\'ee Poussin problem for convolution operators with nodes defined inside an~angle
\jour TMF
\yr 2014
\vol 180
\issue 2
\pages 264--271
\mathnet{http://mi.mathnet.ru/tmf8654}
\crossref{https://doi.org/10.4213/tmf8654}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344488}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...180..983N}
\elib{https://elibrary.ru/item.asp?id=22834519}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 180
\issue 2
\pages 983--989
\crossref{https://doi.org/10.1007/s11232-014-0193-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000341094400008}
\elib{https://elibrary.ru/item.asp?id=23984282}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906505283}
Linking options:
  • https://www.mathnet.ru/eng/tmf8654
  • https://doi.org/10.4213/tmf8654
  • https://www.mathnet.ru/eng/tmf/v180/i2/p264
  • This publication is cited in the following 3 articles:
    1. S. G. Merzlyakov, S. V. Popenov, “Interpolation by sums of series of exponentials and global Cauchy problem for convolution operators”, Dokl. Math., 99:2 (2019), 149–151  crossref  mathscinet  isi  scopus
    2. S. G. Merzlyakov, S. V. Popenov, “Interpolation by series of exponential functions whose exponents are condensed in a certain direction”, J. Math. Sci. (N. Y.), 257:3 (2021), 334–352  mathnet  crossref  mathscinet
    3. S. G. Merzlyakov, S. V. Popenov, “Set of exponents for interpolation of exponential series by sums in all convex domains”, J. Math. Sci. (N. Y.), 245:1 (2020), 48–63  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:480
    Full-text PDF :178
    References:91
    First page:36
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025