Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 180, Number 2, Pages 272–288
DOI: https://doi.org/10.4213/tmf8623
(Mi tmf8623)
 

This article is cited in 10 scientific papers (total in 10 papers)

Qualitative difference between solutions of stationary model Boltzmann equations in the linear and nonlinear cases

A. Kh. Khachatryan, Kh. A. Khachatryan

Institute of Mathematics, Armenian National Academy of Sciences, Yerevan, Armenia
References:
Abstract: We consider problems for the nonlinear Boltzmann equation in the framework of two models{:} a new nonlinear model and the Bhatnagar–Gross–Krook model. The corresponding transformations reduce these problems to nonlinear systems of integral equations. In the framework of the new nonlinear model, we prove the existence of a positive bounded solution of the nonlinear system of integral equations and present examples of functions describing the nonlinearity in this model. The obtained form of the Boltzmann equation in the framework of the Bhatnagar–Gross–Krook model allows analyzing the problem and indicates a method for solving it. We show that there is a qualitative difference between the solutions in the linear and nonlinear cases{\rm:} the temperature is a bounded function in the nonlinear case, while it increases linearly at infinity in the linear approximation. We establish that in the framework of the new nonlinear model, equations describing the distributions of temperature, concentration, and mean-mass velocity are mutually consistent, which cannot be asserted in the case of the Bhatnagar–Gross–Krook model.
Keywords: model Boltzmann equation, nonlinearity, monotonicity, bounded solution, temperature jump, system of integral equations.
Received: 09.12.2013
Revised: 16.01.2014
English version:
Theoretical and Mathematical Physics, 2014, Volume 180, Issue 2, Pages 990–1004
DOI: https://doi.org/10.1007/s11232-014-0194-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Kh. Khachatryan, Kh. A. Khachatryan, “Qualitative difference between solutions of stationary model Boltzmann equations in the linear and nonlinear cases”, TMF, 180:2 (2014), 272–288; Theoret. and Math. Phys., 180:2 (2014), 990–1004
Citation in format AMSBIB
\Bibitem{KhaKha14}
\by A.~Kh.~Khachatryan, Kh.~A.~Khachatryan
\paper Qualitative difference between solutions of stationary model Boltzmann equations in the~linear and nonlinear cases
\jour TMF
\yr 2014
\vol 180
\issue 2
\pages 272--288
\mathnet{http://mi.mathnet.ru/tmf8623}
\crossref{https://doi.org/10.4213/tmf8623}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344489}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...180..990K}
\elib{https://elibrary.ru/item.asp?id=22834520}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 180
\issue 2
\pages 990--1004
\crossref{https://doi.org/10.1007/s11232-014-0194-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000341094400009}
\elib{https://elibrary.ru/item.asp?id=24577278}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906491860}
Linking options:
  • https://www.mathnet.ru/eng/tmf8623
  • https://doi.org/10.4213/tmf8623
  • https://www.mathnet.ru/eng/tmf/v180/i2/p272
  • This publication is cited in the following 10 articles:
    1. Kh. A. Khachatryan, A. R. Hakobyan, “On nontrivial solvability of one class of nonlinear integral equations with conservative kernel on the positive semi-axis”, Uch. zapiski EGU, ser. Fizika i Matematika, 56:1 (2022), 7–18  mathnet  crossref  mathscinet
    2. Ch.-j. Liu, S. Pang, Q. Xu, L. He, Sh.-p. Yang, Yu.-j. Qing, “The study of the Boltzmann equation of solid-gas two-phase flow with three-dimensional BGK model”, International Conference on Civil, Mechanical and Material Engineering (Iccmme 2018), AIP Conf. Proc., 1973, eds. J. Jung, D. Kim, Amer. Inst. Phys., 2018, UNSP 020004-1  crossref  isi  scopus
    3. Kh. A. Khachatryan, Ts. É. Terdzhyan, T. G. Sardanyan, “On the Solvability of One System of Nonlinear Hammerstein-Type Integral Equations on the Semiaxis”, Ukr Math J, 69:8 (2018), 1287  crossref
    4. Kh. A. Khachatryan, T. G. Sardaryan, “O razreshimosti odnogo klassa nelineinykh integralnykh uravnenii tipa Urysona na vsei pryamoi”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 17:1 (2017), 40–50  mathnet  crossref  elib
    5. A. Kh. Khachatryan, Kh. A. Khachatryan, “A one-parameter family of positive solutions of the non-linear stationary Boltzmann equation (in the framework of a modified model)”, Russian Math. Surveys, 72:3 (2017), 571–573  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. Kh. A. Khachatryan, A. S. Petrosyan, A. A. Sisakyan, “O netrivialnoi razreshimosti odnogo klassa nelineinykh integralnykh uravnenii tipa Urysona”, Tr. IMM UrO RAN, 23, no. 2, 2017, 266–273  mathnet  crossref  elib
    7. Kh. A. Khachatryan, “On the solvability of one class of two-dimensional Urysohn integral equations”, Siberian Adv. Math., 28:3 (2018), 166–174  mathnet  crossref  crossref  elib
    8. H. H. Azizyan, Kh. A. Khachatryan, “One-parametric family of positive solutions for a class of nonlinear discrete Hammerstein–Volterra equations”, Ufa Math. J., 8:1 (2016), 13–19  mathnet  crossref  isi  elib
    9. A. Kh. Khachatryan, Kh. A. Khachatryan, “Some problems concerning the solvability of the nonlinear stationary Boltzmann equation in the framework of the BGK model”, Trans. Moscow Math. Soc., 77 (2016), 87–106  mathnet  crossref  elib
    10. K. A. Khachatryan, T. E. Terdzhyan, “On the solvability of one class of nonlinear integral equations in $L_1(0,+\infty)$”, Siberian Adv. Math., 25:4 (2015), 268–275  mathnet  crossref  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:929
    Full-text PDF :219
    References:76
    First page:39
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025