Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 179, Number 2, Pages 189–195
DOI: https://doi.org/10.4213/tmf8634
(Mi tmf8634)
 

This article is cited in 10 scientific papers (total in 10 papers)

Euler integral symmetries for the confluent Heun equation and symmetries of the Painlevé equation PV

A. Ya. Kazakovab, S. Yu. Slavyanovc

a Saint Petersburg State University of Technology and Design, St. Petersburg, Russia
b St. Petersburg State University of Aerospace Instrumentation, St. Petersburg, Russia
c St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: Euler integral symmetries relate solutions of ordinary linear differential equations and generate integral representations of the solutions in several cases or relations between solutions of constrained equations. These relations lead to the corresponding symmetries of the monodromy matrices for the differential equations. We discuss Euler symmetries in the case of the deformed confluent Heun equation, which is in turn related to the Painlevé equation PV. The existence of symmetries of the linear equations leads to the corresponding symmetries of the Painlevé equation of the Okamoto type. The choice of the system of linear equations that reduces to the deformed confluent Heun equation is the starting point for the constructions. The basic technical problem is to choose the bijective relation between the system parameters and the parameters of the deformed confluent Heun equation. The solution of this problem is quite large, and we use the algebraic computing system Maple for this.
Keywords: confluent Heun equation, Euler integral transform, monodromy, apparent singularity.
Received: 23.12.2013
English version:
Theoretical and Mathematical Physics, 2014, Volume 179, Issue 2, Pages 543–549
DOI: https://doi.org/10.1007/s11232-014-0160-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Ya. Kazakov, S. Yu. Slavyanov, “Euler integral symmetries for the confluent Heun equation and symmetries of the Painlevé equation PV”, TMF, 179:2 (2014), 189–195; Theoret. and Math. Phys., 179:2 (2014), 543–549
Citation in format AMSBIB
\Bibitem{KazSla14}
\by A.~Ya.~Kazakov, S.~Yu.~Slavyanov
\paper Euler integral symmetries for the~confluent Heun equation and symmetries of the~Painlev\'e equation PV
\jour TMF
\yr 2014
\vol 179
\issue 2
\pages 189--195
\mathnet{http://mi.mathnet.ru/tmf8634}
\crossref{https://doi.org/10.4213/tmf8634}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3301488}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...179..543K}
\elib{https://elibrary.ru/item.asp?id=21826675}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 179
\issue 2
\pages 543--549
\crossref{https://doi.org/10.1007/s11232-014-0160-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337055200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84927673141}
Linking options:
  • https://www.mathnet.ru/eng/tmf8634
  • https://doi.org/10.4213/tmf8634
  • https://www.mathnet.ru/eng/tmf/v179/i2/p189
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:506
    Full-text PDF :176
    References:84
    First page:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024