Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 179, Number 2, Pages 147–188
DOI: https://doi.org/10.4213/tmf8625
(Mi tmf8625)
 

This article is cited in 46 scientific papers (total in 46 papers)

Differential hierarchy and additional grading of knot polynomials

S. B. Arthamonova, A. D. Mironovab, A. Yu. Morozova

a Institute for Theoretical and Experimental Physics, Moscow, Russia
b Lebedev Physics Institute, RAS, Moscow, Russia
References:
Abstract: Colored knot polynomials have a special $Z$-expansion in certain combinations of differentials, which depend on the representation. The expansion coefficients are functions of three variables $A$, $q$, and $t$ and can be regarded as new distinguished coordinates on the space of knot polynomials, analogous to the coefficients of the alternative character expansion. These new variables decompose especially simply when the representation is embedded into a product of fundamental representations. The recently proposed fourth grading is seemingly a simple redefinition of these new coordinates, elegant, but in no way distinguished. If this is so, then it does not provide any new independent knot invariants, but it can instead be regarded as one more piece of evidence in support of a hidden differential hierarchy $(Z$-expansion{)} structure behind the knot polynomials.
Keywords: Chern–Simons theory, colored knot invariant, superpolynomial.
Received: 11.12.2013
English version:
Theoretical and Mathematical Physics, 2014, Volume 179, Issue 2, Pages 509–542
DOI: https://doi.org/10.1007/s11232-014-0159-9
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. B. Arthamonov, A. D. Mironov, A. Yu. Morozov, “Differential hierarchy and additional grading of knot polynomials”, TMF, 179:2 (2014), 147–188; Theoret. and Math. Phys., 179:2 (2014), 509–542
Citation in format AMSBIB
\Bibitem{ArtMirMor14}
\by S.~B.~Arthamonov, A.~D.~Mironov, A.~Yu.~Morozov
\paper Differential hierarchy and additional grading of knot polynomials
\jour TMF
\yr 2014
\vol 179
\issue 2
\pages 147--188
\mathnet{http://mi.mathnet.ru/tmf8625}
\crossref{https://doi.org/10.4213/tmf8625}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3301487}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...179..509A}
\elib{https://elibrary.ru/item.asp?id=21826674}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 179
\issue 2
\pages 509--542
\crossref{https://doi.org/10.1007/s11232-014-0159-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337055200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904623711}
Linking options:
  • https://www.mathnet.ru/eng/tmf8625
  • https://doi.org/10.4213/tmf8625
  • https://www.mathnet.ru/eng/tmf/v179/i2/p147
  • This publication is cited in the following 46 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:592
    Full-text PDF :213
    References:69
    First page:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024