Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 178, Number 3, Pages 363–389
DOI: https://doi.org/10.4213/tmf8613
(Mi tmf8613)
 

This article is cited in 10 scientific papers (total in 10 papers)

Scalar products in models with a $GL(3)$ trigonometric $R$-matrix: Highest coefficient

S. Z. Pakulyakabc, E. Ragoucyd, N. A. Slavnove

a Institute for Theoretical and Experimental Physics, Moscow, Russia
b Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Oblast, Russia
c Joint Institute for Nuclear Research, Dubna, Moscow Oblast, Russia
d Laboratoire d'Annecy-le-Vieux de Physique Théorique, CNRS — Université de Savoie, Annecy-le-Vieux, France
e Steklov Mathematical Institute, RAS, Moscow, Russia
References:
Abstract: We study quantum integrable models with a $GL(3)$ trigonometric $R$-matrix solvable by the nested algebraic Bethe ansatz. Scalar products of Bethe vectors in such models can be expressed in terms of bilinear combinations of the highest coefficients. We show that there exist two different highest coefficients in the models with a $GL(3)$ trigonometric $R$-matrix. We obtain various representations for the highest coefficients in terms of sums over partitions. We also prove several important properties of the highest coefficients, which are necessary for evaluating the scalar products.
Keywords: nested Bethe ansatz, scalar product, highest coefficient.
Received: 18.11.2013
English version:
Theoretical and Mathematical Physics, 2014, Volume 178, Issue 3, Pages 314–335
DOI: https://doi.org/10.1007/s11232-014-0145-2
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with a $GL(3)$ trigonometric $R$-matrix: Highest coefficient”, TMF, 178:3 (2014), 363–389; Theoret. and Math. Phys., 178:3 (2014), 314–335
Citation in format AMSBIB
\Bibitem{PakRagSla14}
\by S.~Z.~Pakulyak, E.~Ragoucy, N.~A.~Slavnov
\paper Scalar products in models with a~$GL(3)$ trigonometric $R$-matrix: Highest coefficient
\jour TMF
\yr 2014
\vol 178
\issue 3
\pages 363--389
\mathnet{http://mi.mathnet.ru/tmf8613}
\crossref{https://doi.org/10.4213/tmf8613}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3301507}
\zmath{https://zbmath.org/?q=an:1298.81109}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...178..314P}
\elib{https://elibrary.ru/item.asp?id=21826658}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 178
\issue 3
\pages 314--335
\crossref{https://doi.org/10.1007/s11232-014-0145-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334254700004}
\elib{https://elibrary.ru/item.asp?id=21872435}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898740808}
Linking options:
  • https://www.mathnet.ru/eng/tmf8613
  • https://doi.org/10.4213/tmf8613
  • https://www.mathnet.ru/eng/tmf/v178/i3/p363
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024