Abstract:
We study quantum integrable models with a $GL(3)$ trigonometric $R$-matrix solvable by the nested algebraic Bethe ansatz. Scalar products of Bethe vectors in such models can be expressed in terms of bilinear combinations of the highest coefficients. We show that there exist two different highest coefficients in the models with a $GL(3)$ trigonometric $R$-matrix. We obtain various representations for the highest coefficients in terms of sums over partitions. We also prove several important properties of the highest coefficients, which are necessary for evaluating the scalar products.
Citation:
S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with a $GL(3)$ trigonometric $R$-matrix: Highest coefficient”, TMF, 178:3 (2014), 363–389; Theoret. and Math. Phys., 178:3 (2014), 314–335
This publication is cited in the following 10 articles:
A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “New symmetries of gl(n)-invariant Bethe vectors”, J. Stat. Mech.-Theory Exp., 2019, 044001
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products and norm of Bethe vectors for integrable models based on $U_q(\widehat{\mathfrak{gl}}_m)$”, SciPost Phys., 4:1 (2018), 006
Stanislav Pakuliak, Eric Ragoucy, Nikita Slavnov, “Nested Algebraic Bethe Ansatz in integrable models: recent results”, SciPost Phys. Lect. Notes, 2018
N. Gromov, F. Levkovich-Maslyuk, G. Sizov, “New construction of eigenstates and separation of variables for $\mathrm{SU}(N)$ quantum spin chains”, J. High Energy Phys., 2017, no. 9, 111
Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Bethe vectors for models based on the super-Yangian $Y(gl(m|n))$”, J. Integrab. Syst., 2 (2017), 1–31
Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models”, SIGMA, 12 (2016), 099, 22 pp.
K. K. Kozlowski, E. Ragoucy, “Asymptotic behaviour of two-point functions in multi-species models”, Nucl. Phys. B, 906 (2016), 241–288
N. A. Slavnov, “Scalar products in $GL(3)$-based models with trigonometric $R$-matrix. Determinant representation”, J. Stat. Mech., 2015:3 (2015), 3019–25
S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with the $GL(3)$ trigonometric $R$-matrix: General case”, Theoret. and Math. Phys., 180:1 (2014), 795–814
J. Caetano, T. Fleury, “Three-point functions and $\mathfrak{su}(1|1)$ spin chains”, J. High Energy Phys., 2014, no. 9, 173