Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 178, Number 3, Pages 390–402
DOI: https://doi.org/10.4213/tmf8544
(Mi tmf8544)
 

This article is cited in 4 scientific papers (total in 4 papers)

Positivity of eigenvalues of the two-particle Schrödinger operator on a lattice

S. N. Lakaev, Sh. U. Alladustov

Samarkand State University, Samarkand, Uzbekistan
Full-text PDF (472 kB) Citations (4)
References:
Abstract: We consider the family $H(k)$ of two-particle discrete Schrödinger operators depending on the quasimomentum of a two-particle system $k\in\mathbb T^d$, where $\mathbb T^d$ is a $d$-dimensional torus. This family of operators is associated with the Hamiltonian of a system of two arbitrary particles on the $d$-dimensional lattice $\mathbb Z^d$, $d\ge3$, interacting via a short-range attractive pair potential. We prove that the eigenvalues of the Schrödinger operator $H(k)$ below the essential spectrum are positive for all nonzero values of the quasimomentum $k\in\mathbb T^d$ if the operator $H(0)$ is nonnegative. We establish a similar result for the eigenvalues of the Schrödinger operator $H_+(k)$, $k\in\mathbb T^d$, corresponding to a two-particle system with repulsive interaction.
Keywords: discrete Schrödinger operator, system quasimomentum, Hamiltonian, repulsive interaction, virtual level, eigenvalue, lattice.
Received: 25.04.2013
Revised: 29.07.2013
English version:
Theoretical and Mathematical Physics, 2014, Volume 178, Issue 3, Pages 336–346
DOI: https://doi.org/10.1007/s11232-014-0146-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. N. Lakaev, Sh. U. Alladustov, “Positivity of eigenvalues of the two-particle Schrödinger operator on a lattice”, TMF, 178:3 (2014), 390–402; Theoret. and Math. Phys., 178:3 (2014), 336–346
Citation in format AMSBIB
\Bibitem{LakAll14}
\by S.~N.~Lakaev, Sh.~U.~Alladustov
\paper Positivity of eigenvalues of the~two-particle Schr\"odinger operator on a~lattice
\jour TMF
\yr 2014
\vol 178
\issue 3
\pages 390--402
\mathnet{http://mi.mathnet.ru/tmf8544}
\crossref{https://doi.org/10.4213/tmf8544}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3301508}
\zmath{https://zbmath.org/?q=an:1298.81086}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...178..336L}
\elib{https://elibrary.ru/item.asp?id=21826661}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 178
\issue 3
\pages 336--346
\crossref{https://doi.org/10.1007/s11232-014-0146-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334254700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898726923}
Linking options:
  • https://www.mathnet.ru/eng/tmf8544
  • https://doi.org/10.4213/tmf8544
  • https://www.mathnet.ru/eng/tmf/v178/i3/p390
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:711
    Full-text PDF :197
    References:100
    First page:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024