Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 178, Number 3, Pages 307–321
DOI: https://doi.org/10.4213/tmf8595
(Mi tmf8595)
 

This article is cited in 4 scientific papers (total in 4 papers)

Integer-valued characteristics of solutions of the noncommutative sigma model

A. V. Domrina

Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (459 kB) Citations (4)
References:
Abstract: Any finite-energy solution of a noncommutative sigma model has three nonnegative integer-valued characteristics: the normalized energy $e(\Phi)$, canonical rank $r(\Phi)$, and minimum uniton number $u(\Phi)$. We prove that $r(\Phi)\ge u(\Phi)$ and $e(\Phi)\ge u(\Phi)(u(\Phi)+1)/2$. Given any numbers $e,r,u\in\mathbb N$ that satisfy the slightly stronger inequalities $r\ge u$ and $e\ge r+u(u-1)/2$, we construct a finite-energy solution $\Phi$ with $e(\Phi)=e$, $r(\Phi)=r$, and $u(\Phi)=u$.
Keywords: noncommutative sigma model, uniton factorization.
Received: 10.09.2013
English version:
Theoretical and Mathematical Physics, 2014, Volume 178, Issue 3, Pages 265–277
DOI: https://doi.org/10.1007/s11232-014-0142-5
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Domrina, “Integer-valued characteristics of solutions of the noncommutative sigma model”, TMF, 178:3 (2014), 307–321; Theoret. and Math. Phys., 178:3 (2014), 265–277
Citation in format AMSBIB
\Bibitem{Dom14}
\by A.~V.~Domrina
\paper Integer-valued characteristics of solutions of the~noncommutative
sigma~model
\jour TMF
\yr 2014
\vol 178
\issue 3
\pages 307--321
\mathnet{http://mi.mathnet.ru/tmf8595}
\crossref{https://doi.org/10.4213/tmf8595}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3301504}
\zmath{https://zbmath.org/?q=an:1298.81144}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...178..265D}
\elib{https://elibrary.ru/item.asp?id=21826650}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 178
\issue 3
\pages 265--277
\crossref{https://doi.org/10.1007/s11232-014-0142-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334254700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898716161}
Linking options:
  • https://www.mathnet.ru/eng/tmf8595
  • https://doi.org/10.4213/tmf8595
  • https://www.mathnet.ru/eng/tmf/v178/i3/p307
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:426
    Full-text PDF :171
    References:59
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024