Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 178, Number 3, Pages 322–345
DOI: https://doi.org/10.4213/tmf8607
(Mi tmf8607)
 

This article is cited in 16 scientific papers (total in 16 papers)

Exact solutions of one-dimensional nonlinear shallow water equations over even and sloping bottoms

Yu. A. Chirkunovab, S. Yu. Dobrokhotovcd, S. B. Medvedeveb, D. S. Minenkovcd

a Novosibirsk State Technical University, Novosibirsk, Russia
b Institute for Computation Technologies, Siberian Branch, RAS, Novosibirsk, Russia
c Ishlinsky Institute for Problems in Mechanics, RAS, Moscow, Russia
d Moscow Institute for Physics and Technology, Dolgoprudny, Moscow Oblast, Russia
e Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: We establish an equivalence of two systems of equations of one-dimensional shallow water models describing the propagation of surface waves over even and sloping bottoms. For each of these systems, we obtain formulas for the general form of their nondegenerate solutions, which are expressible in terms of solutions of the Darboux equation. The invariant solutions of the Darboux equation that we find are simplest representatives of its essentially different exact solutions (those not related by invertible point transformations). They depend on $21$ arbitrary real constants; after “proliferation” formulas derived by methods of group theory analysis are applied, they generate a 27-parameter family of essentially different exact solutions. Subsequently using the derived infinitesimal “proliferation” formulas for the solutions in this family generates a denumerable set of exact solutions, whose linear span constitutes an infinite-dimensional vector space of solutions of the Darboux equation. This vector space of solutions of the Darboux equation and the general formulas for nondegenerate solutions of systems of shallow water equations with even and sloping bottoms give an infinite set of their solutions. The “proliferation” formulas for these systems determine their additional nondegenerate solutions. We also find all degenerate solutions of these systems and thus construct a database of an infinite set of exact solutions of systems of equations of the one-dimensional nonlinear shallow water model with even and sloping bottoms.
Keywords: shallow water equation, Euler–Poisson–Darboux equation, exact solution, invariant solution, symmetry group.
Received: 31.10.2013
English version:
Theoretical and Mathematical Physics, 2014, Volume 178, Issue 3, Pages 278–298
DOI: https://doi.org/10.1007/s11232-014-0143-4
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. A. Chirkunov, S. Yu. Dobrokhotov, S. B. Medvedev, D. S. Minenkov, “Exact solutions of one-dimensional nonlinear shallow water equations over even and sloping bottoms”, TMF, 178:3 (2014), 322–345; Theoret. and Math. Phys., 178:3 (2014), 278–298
Citation in format AMSBIB
\Bibitem{ChiDobMed14}
\by Yu.~A.~Chirkunov, S.~Yu.~Dobrokhotov, S.~B.~Medvedev, D.~S.~Minenkov
\paper Exact solutions of one-dimensional nonlinear shallow water equations over even and sloping bottoms
\jour TMF
\yr 2014
\vol 178
\issue 3
\pages 322--345
\mathnet{http://mi.mathnet.ru/tmf8607}
\crossref{https://doi.org/10.4213/tmf8607}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3301505}
\zmath{https://zbmath.org/?q=an:1297.76027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...178..278C}
\elib{https://elibrary.ru/item.asp?id=21826651}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 178
\issue 3
\pages 278--298
\crossref{https://doi.org/10.1007/s11232-014-0143-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334254700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898749663}
Linking options:
  • https://www.mathnet.ru/eng/tmf8607
  • https://doi.org/10.4213/tmf8607
  • https://www.mathnet.ru/eng/tmf/v178/i3/p322
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:801
    Full-text PDF :304
    References:108
    First page:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024