Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 178, Number 1, Pages 107–130
DOI: https://doi.org/10.4213/tmf8531
(Mi tmf8531)
 

This article is cited in 9 scientific papers (total in 9 papers)

Tunnel splitting of the spectrum and bilocalization of eigenfunctions in an asymmetric double well

E. V. Vybornyi

Moscow Institute of Electronics and Mathematics, Higher School of Economics, Moscow
Full-text PDF (531 kB) Citations (9)
References:
Abstract: We consider the one-dimensional stationary Schrödinger equation with a smooth double-well potential. We obtain a criterion for the double localization of wave functions, exponential splitting of energy levels, and the tunneling transport of a particle in an asymmetric potential and also obtain asymptotic formulas for the energy splitting that generalize the formulas known in the case of a mirror-symmetric potential. We consider the case of higher energy levels and the case of energies close to the potential minimums. We present an example of tunneling transport in an asymmetric double well and also consider the problem of tunnel perturbation of the discrete spectrum of the Schrödinger operator with a single-well potential. Exponentially small perturbations of the energies occur in the case of local potential deformations concentrated only in the classically forbidden region. We also calculate the leading term of the asymptotic expansion of the tunnel perturbation of the spectrum.
Keywords: tunneling, quasi-intersection of energy levels, one-dimensional Schrödinger equation, semiclassical approximation.
Received: 17.03.2013
Revised: 15.07.2013
English version:
Theoretical and Mathematical Physics, 2014, Volume 178, Issue 1, Pages 93–114
DOI: https://doi.org/10.1007/s11232-014-0132-7
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. V. Vybornyi, “Tunnel splitting of the spectrum and bilocalization of eigenfunctions in an asymmetric double well”, TMF, 178:1 (2014), 107–130; Theoret. and Math. Phys., 178:1 (2014), 93–114
Citation in format AMSBIB
\Bibitem{Vyb14}
\by E.~V.~Vybornyi
\paper Tunnel splitting of the~spectrum and bilocalization of eigenfunctions in an~asymmetric double well
\jour TMF
\yr 2014
\vol 178
\issue 1
\pages 107--130
\mathnet{http://mi.mathnet.ru/tmf8531}
\crossref{https://doi.org/10.4213/tmf8531}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3302462}
\zmath{https://zbmath.org/?q=an:1298.81089}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...178...93V}
\elib{https://elibrary.ru/item.asp?id=21277098}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 178
\issue 1
\pages 93--114
\crossref{https://doi.org/10.1007/s11232-014-0132-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332122900004}
\elib{https://elibrary.ru/item.asp?id=21866755}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894680024}
Linking options:
  • https://www.mathnet.ru/eng/tmf8531
  • https://doi.org/10.4213/tmf8531
  • https://www.mathnet.ru/eng/tmf/v178/i1/p107
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:659
    Full-text PDF :275
    References:103
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024