Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 176, Number 3, Pages 417–428
DOI: https://doi.org/10.4213/tmf8498
(Mi tmf8498)
 

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotic behavior of eigenvalues of the two-particle discrete Schrödinger operator

J. I. Abdullaeva, B. U. Mamirov

a Samarkand State University, Samarkand, Uzbekistan
Full-text PDF (430 kB) Citations (2)
References:
Abstract: We consider two-particle Schrödinger operator H(k)H(k) on a three-dimensional lattice Z3 (here k is the total quasimomentum of a two-particle system, kT3:=(π,π]3). We show that for any kS=T3(π,π)3, there is a potential ˆv such that the two-particle operator H(k) has infinitely many eigenvalues zn(k) accumulating near the left boundary m(k) of the continuous spectrum. We describe classes of potentials W(j) and W(ij) and manifolds S(j)S, i,j{1,2,3}, such that if kS(3), (k2,k3)(π,π)2, and ˆvW(3), then the operator H(k) has infinitely many eigenvalues zn(k) with an asymptotic exponential form as n and if kS(i)S(j) and ˆvW(ij), then the eigenvalues znm(k) of H(k) can be calculated exactly. In both cases, we present the explicit form of the eigenfunctions.
Keywords: Hamiltonian, total quasimomentum, Schrödinger operator, asymptotic behavior, eigenvalue, eigenfunction.
Received: 11.01.2013
Revised: 14.02.2013
English version:
Theoretical and Mathematical Physics, 2013, Volume 176, Issue 3, Pages 1184–1193
DOI: https://doi.org/10.1007/s11232-013-0099-9
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: J. I. Abdullaev, B. U. Mamirov, “Asymptotic behavior of eigenvalues of the two-particle discrete Schrödinger operator”, TMF, 176:3 (2013), 417–428; Theoret. and Math. Phys., 176:3 (2013), 1184–1193
Citation in format AMSBIB
\Bibitem{AbdMam13}
\by J.~I.~Abdullaev, B.~U.~Mamirov
\paper Asymptotic behavior of eigenvalues of the~two-particle discrete Schr\"odinger operator
\jour TMF
\yr 2013
\vol 176
\issue 3
\pages 417--428
\mathnet{http://mi.mathnet.ru/tmf8498}
\crossref{https://doi.org/10.4213/tmf8498}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3230742}
\zmath{https://zbmath.org/?q=an:1286.81076}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...176.1184A}
\elib{https://elibrary.ru/item.asp?id=20732659}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 176
\issue 3
\pages 1184--1193
\crossref{https://doi.org/10.1007/s11232-013-0099-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325707900007}
\elib{https://elibrary.ru/item.asp?id=22140956}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84885668333}
Linking options:
  • https://www.mathnet.ru/eng/tmf8498
  • https://doi.org/10.4213/tmf8498
  • https://www.mathnet.ru/eng/tmf/v176/i3/p417
  • This publication is cited in the following 2 articles:
    1. Zh. I. Abdullaev, A. M. Khalkhuzhaev, I. S. Shotemirov, “O beskonechnosti chisla sobstvennykh znachenii dvukhchastichnogo operatora Shredingera na reshetke”, Izv. vuzov. Matem., 2024, no. 12, 3–11  mathnet  crossref
    2. J. I. Abdullaev, A. M. Khalkhuzhaev, Yu. S. Shotemirov, “On the Infinite Number of Eigenvalues of the Two-Particle Schrödinger Operator on a Lattice”, Russ Math., 68:12 (2024), 25  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:430
    Full-text PDF :203
    References:65
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025