Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 173, Number 2, Pages 314–332
DOI: https://doi.org/10.4213/tmf8336
(Mi tmf8336)
 

This article is cited in 32 scientific papers (total in 32 papers)

Microscopic model of a non-Debye dielectric relaxation: The Cole–Cole law and its generalization

A. A. Khamzin, R. R. Nigmatullin, I. I. Popov

Institute for Physics, Kazan (Volga Region) Federal University, Kazan, Russia
References:
Abstract: Based on a self-similar spatial–temporal structure of the relaxation process, we construct a microscopic model for a non-Debye (nonexponential) dielectric relaxation in complex systems. In this model, we derive the Cole–Cole expression for the complex dielectric permittivity and show that the exponent α involved in that expression is equal to the fractal dimension of the spatial–temporal self-similar ensemble characterizing the structure of the medium and the relaxation process occurring in it. We find a relation between the macroscopic relaxation time and the micro- and mesoparameters of the system. We obtain a generalized Cole–Cole expression for the complex dielectric permittivity involving log-periodic corrections that occur because of a discrete scaling invariance of the fractal structure generating the relaxation process on the mesoscopic scale. The found expression for the dielectric permittivity can be used to interpret dielectric spectra in disordered dielectrics.
Keywords: dielectric relaxation, complex dielectric permittivity, non-Debye dielectric spectrum, fractal, discrete scaling invariance, log-periodic oscillation.
Received: 19.03.2012
Revised: 23.04.2012
English version:
Theoretical and Mathematical Physics, 2012, Volume 173, Issue 2, Pages 1604–1619
DOI: https://doi.org/10.1007/s11232-012-0135-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Khamzin, R. R. Nigmatullin, I. I. Popov, “Microscopic model of a non-Debye dielectric relaxation: The Cole–Cole law and its generalization”, TMF, 173:2 (2012), 314–332; Theoret. and Math. Phys., 173:2 (2012), 1604–1619
Citation in format AMSBIB
\Bibitem{KhaNigPop12}
\by A.~A.~Khamzin, R.~R.~Nigmatullin, I.~I.~Popov
\paper Microscopic model of a~non-Debye dielectric relaxation: The~Cole--Cole law and its generalization
\jour TMF
\yr 2012
\vol 173
\issue 2
\pages 314--332
\mathnet{http://mi.mathnet.ru/tmf8336}
\crossref{https://doi.org/10.4213/tmf8336}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...173.1604K}
\elib{https://elibrary.ru/item.asp?id=20732549}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 173
\issue 2
\pages 1604--1619
\crossref{https://doi.org/10.1007/s11232-012-0135-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312081200008}
\elib{https://elibrary.ru/item.asp?id=20486619}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870768199}
Linking options:
  • https://www.mathnet.ru/eng/tmf8336
  • https://doi.org/10.4213/tmf8336
  • https://www.mathnet.ru/eng/tmf/v173/i2/p314
  • This publication is cited in the following 32 articles:
    1. Heyan Gong, Zaijun Jiang, Jiefeng Liu, Xianhao Fan, Thomas Wu, Chuanyang Li, Giovanni Mazzanti, “Aging State Evaluation for Insulation Paper of Traction Transformer Hotspot Region Based on FDS and Intelligent Algorithm”, IEEE Trans. Transp. Electrific., 11:1 (2025), 4350  crossref
    2. Enrico Mattana, Matteo Bruno Lodi, Marco Simone, Giuseppe Mazzarella, Alessandro Fanti, “Cole–Cole Model for the Dielectric Characterization of Healthy Skin and Basal Cell Carcinoma at THz Frequencies”, IEEE Open J. Eng. Med. Biol., 5 (2024), 600  crossref
    3. Piotr Ryś, Jacek Kowalczyk, Maja Mroczkowska-Szerszeń, Marcin Kaczkan, Karolina Majewska, Piotr Moszczyński, Wojciech Pudełko, Maciej Siekierski, “Dispersion phenomena in EIS and DIS spectra of porous materials and their representation as transmission line bases 'diffusion' elements– part II - a case study of proton conductors”, Appl. Phys. A, 130:12 (2024)  crossref
    4. Sofiane Ait Hamadouche, Tulio Honorio, Thierry Bore, Farid Benboudjema, Franck Daout, Eric Vourc'h, “Dielectric permittivity of C-S-H”, Cement and Concrete Research, 169 (2023), 107178  crossref
    5. Aditi Mandal, Sylvain Tricot, Rakesh Choubisa, Didier Sébilleau, “Model dielectric functions for fluctuation potential calculations in electron gas: A critical assessment”, Phys. Rev. B, 105:19 (2022)  crossref
    6. Lodi M.B., Curreli N., Melis A., Garau E., Fanari F., Fedeli A., Randazzo A., Mazzarella G., Fanti A., “Microwave Characterization and Modeling of the Carasau Bread Doughs During Leavening”, IEEE Access, 9 (2021), 159833–159847  crossref  isi
    7. Ghrib M., Tlili B., Razeg M., Ouertani R., Gaidi M., Ezzaouia H., “Effect of Al2O3 Decoration on the Opto-Electrical Properties of a Porous Si/Cr2O3 Composite”, Opto-Electron. Rev., 28:3 (2020), 155–163  crossref  isi  scopus
    8. Huang Yu., Hou H., Oterkus S., Wei Zh., Gao N., “Two-Dimensional Finite-Difference Time-Domain Formulation For Sound Propagation in a Temperature-Dependent Elastomer-Fluid Medium”, J. Acoust. Soc. Am., 147:1 (2020), 428–445  crossref  isi
    9. Kanjaa M., El Mrabet O., El Adraoui S., Mounirh Kh., Khalladi M., “An Ade-Tlm Algorithm For Modeling Wave Propagation in Biological Tissues With Debye Dispersion”, Adv. Electromagn., 9:3 (2020), 1–7  crossref  isi
    10. Kostrobij P.P., Markovych B.M., Viznovych O.V., Tokarchuk M.V., “Generalized Transport Equation With Nonlocality of Space-Time. Zubarev'S Nso Method”, Physica A, 514 (2019), 63–70  crossref  mathscinet  isi  scopus
    11. Semenenko M.G., Kniazeva I.V., Beckel L.S., Rutskiy V.N., Tsarev R.Yu., Yamskikh T.N., Kartsan I.N., International Workshop Advanced Technologies in Material Science, Mechanical and Automation Engineering - Mip: Engineering - 2019, IOP Conference Series-Materials Science and Engineering, 537, IOP Publishing Ltd, 2019  crossref  isi
    12. P. Kostrobij, B. Markovych, O. Viznovych, I. Zelinska, M. Tokarchuk, “Generalized Cattaneo–Maxwell diffusion equation with fractional derivatives. Dispersion relations”, Math. Model. Comput., 6:1 (2019), 58  crossref
    13. P. A. Glushak, B. B. Markiv, M. V. Tokarchuk, “Zubarev's nonequilibrium statistical operator method in the generalized statistics of multiparticle systems”, Theoret. and Math. Phys., 194:1 (2018), 57–73  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    14. P. Kostrobij, I. Grygorchak, F. Ivashchyshyn, B. Markovych, O. Viznovych, M. Tokarchuk, “Generalized electrodiffusion equation with fractality of space-time: experiment and theory”, J. Phys. Chem. A, 122:16 (2018), 4099–4110  crossref  isi
    15. L. K. Narayanan, T. L. Thompson, R. A. Shirwaiker, B. Starly, “Label free process monitoring of 3D bioprinted engineered constructs via dielectric impedance spectroscopy”, Biofabrication, 10:3 (2018), 035012  crossref  isi
    16. F. Farsaci, E. Tellone, A. Galtieri, S. Ficarra, “Expanding the repertoire of dielectric fractional models: a comprehensive development and functional applications to predict metabolic alterations in experimentally-inaccessible cells or tissues”, Fluids, 3:1 (2018), 9  crossref  mathscinet  isi
    17. Khamzin A.A., Nasybullin A.I., “Langevin Approach to the Theory of Dielectric Relaxation of Ice Ih”, Physica A, 508 (2018), 471–480  crossref  mathscinet  isi  scopus
    18. Khamzin A.A., Nasybullin I A., “Trap-Controlled Proton Hopping: Interpretation of Low-Temperature Dielectric Relaxation of Ice Ih”, Phys. Chem. Chem. Phys., 20:35 (2018), 23142–23150  crossref  isi  scopus
    19. Lai Y., Liu G., Li Zh., Lin Yu., “Research on the Method of Seed Water Content Measurement Based on Electromagnetic Induction”, Prog. Electromagn. Res. M, 74 (2018), 191–200  crossref  isi  scopus
    20. A. Palui, A. Ghosh, “Ion dynamics in AgI doped silver selenium-tellurite mixed former glasses”, J. Appl. Phys., 121:12 (2017), 125104  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:987
    Full-text PDF :388
    References:92
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025