Abstract:
Based on a self-similar spatial–temporal structure of the relaxation process, we construct a microscopic model for a non-Debye (nonexponential) dielectric relaxation in complex systems. In this model, we derive the Cole–Cole expression for the complex dielectric permittivity and show that the exponent α involved in that expression is equal to the fractal dimension of the spatial–temporal self-similar ensemble characterizing the structure of the medium and the relaxation process occurring in it. We find a relation between the macroscopic relaxation time and the micro- and mesoparameters of the system. We obtain a generalized Cole–Cole expression for the complex dielectric permittivity involving log-periodic corrections that occur because of a discrete scaling invariance of the fractal structure generating the relaxation process on the mesoscopic scale. The found expression for the dielectric permittivity can be used to interpret dielectric spectra in disordered dielectrics.
Citation:
A. A. Khamzin, R. R. Nigmatullin, I. I. Popov, “Microscopic model of a non-Debye dielectric relaxation: The Cole–Cole law and its generalization”, TMF, 173:2 (2012), 314–332; Theoret. and Math. Phys., 173:2 (2012), 1604–1619
\Bibitem{KhaNigPop12}
\by A.~A.~Khamzin, R.~R.~Nigmatullin, I.~I.~Popov
\paper Microscopic model of a~non-Debye dielectric relaxation: The~Cole--Cole law and its generalization
\jour TMF
\yr 2012
\vol 173
\issue 2
\pages 314--332
\mathnet{http://mi.mathnet.ru/tmf8336}
\crossref{https://doi.org/10.4213/tmf8336}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...173.1604K}
\elib{https://elibrary.ru/item.asp?id=20732549}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 173
\issue 2
\pages 1604--1619
\crossref{https://doi.org/10.1007/s11232-012-0135-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312081200008}
\elib{https://elibrary.ru/item.asp?id=20486619}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870768199}
Linking options:
https://www.mathnet.ru/eng/tmf8336
https://doi.org/10.4213/tmf8336
https://www.mathnet.ru/eng/tmf/v173/i2/p314
This publication is cited in the following 32 articles:
Heyan Gong, Zaijun Jiang, Jiefeng Liu, Xianhao Fan, Thomas Wu, Chuanyang Li, Giovanni Mazzanti, “Aging State Evaluation for Insulation Paper of Traction Transformer Hotspot Region Based on FDS and Intelligent Algorithm”, IEEE Trans. Transp. Electrific., 11:1 (2025), 4350
Enrico Mattana, Matteo Bruno Lodi, Marco Simone, Giuseppe Mazzarella, Alessandro Fanti, “Cole–Cole Model for the Dielectric Characterization of Healthy Skin and Basal Cell Carcinoma at THz Frequencies”, IEEE Open J. Eng. Med. Biol., 5 (2024), 600
Piotr Ryś, Jacek Kowalczyk, Maja Mroczkowska-Szerszeń, Marcin Kaczkan, Karolina Majewska, Piotr Moszczyński, Wojciech Pudełko, Maciej Siekierski, “Dispersion phenomena in EIS and DIS spectra of porous materials and their representation as transmission line bases 'diffusion' elements– part II - a case study of proton conductors”, Appl. Phys. A, 130:12 (2024)
Sofiane Ait Hamadouche, Tulio Honorio, Thierry Bore, Farid Benboudjema, Franck Daout, Eric Vourc'h, “Dielectric permittivity of C-S-H”, Cement and Concrete Research, 169 (2023), 107178
Aditi Mandal, Sylvain Tricot, Rakesh Choubisa, Didier Sébilleau, “Model dielectric functions for fluctuation potential calculations in electron gas: A critical assessment”, Phys. Rev. B, 105:19 (2022)
Lodi M.B., Curreli N., Melis A., Garau E., Fanari F., Fedeli A., Randazzo A., Mazzarella G., Fanti A., “Microwave Characterization and Modeling of the Carasau Bread Doughs During Leavening”, IEEE Access, 9 (2021), 159833–159847
Ghrib M., Tlili B., Razeg M., Ouertani R., Gaidi M., Ezzaouia H., “Effect of Al2O3 Decoration on the Opto-Electrical Properties of a Porous Si/Cr2O3 Composite”, Opto-Electron. Rev., 28:3 (2020), 155–163
Huang Yu., Hou H., Oterkus S., Wei Zh., Gao N., “Two-Dimensional Finite-Difference Time-Domain Formulation For Sound Propagation in a Temperature-Dependent Elastomer-Fluid Medium”, J. Acoust. Soc. Am., 147:1 (2020), 428–445
Kanjaa M., El Mrabet O., El Adraoui S., Mounirh Kh., Khalladi M., “An Ade-Tlm Algorithm For Modeling Wave Propagation in Biological Tissues With Debye Dispersion”, Adv. Electromagn., 9:3 (2020), 1–7
Kostrobij P.P., Markovych B.M., Viznovych O.V., Tokarchuk M.V., “Generalized Transport Equation With Nonlocality of Space-Time. Zubarev'S Nso Method”, Physica A, 514 (2019), 63–70
Semenenko M.G., Kniazeva I.V., Beckel L.S., Rutskiy V.N., Tsarev R.Yu., Yamskikh T.N., Kartsan I.N., International Workshop Advanced Technologies in Material Science, Mechanical and Automation Engineering - Mip: Engineering - 2019, IOP Conference Series-Materials Science and Engineering, 537, IOP Publishing Ltd, 2019
P. Kostrobij, B. Markovych, O. Viznovych, I. Zelinska, M. Tokarchuk, “Generalized Cattaneo–Maxwell diffusion equation with fractional derivatives. Dispersion relations”, Math. Model. Comput., 6:1 (2019), 58
P. A. Glushak, B. B. Markiv, M. V. Tokarchuk, “Zubarev's nonequilibrium statistical operator method in the generalized statistics of multiparticle systems”, Theoret. and Math. Phys., 194:1 (2018), 57–73
P. Kostrobij, I. Grygorchak, F. Ivashchyshyn, B. Markovych, O. Viznovych, M. Tokarchuk, “Generalized electrodiffusion equation with fractality of space-time: experiment and theory”, J. Phys. Chem. A, 122:16 (2018), 4099–4110
L. K. Narayanan, T. L. Thompson, R. A. Shirwaiker, B. Starly, “Label free process monitoring of 3D bioprinted engineered constructs via dielectric impedance spectroscopy”, Biofabrication, 10:3 (2018), 035012
F. Farsaci, E. Tellone, A. Galtieri, S. Ficarra, “Expanding the repertoire of dielectric fractional models: a comprehensive development and functional applications to predict metabolic alterations in experimentally-inaccessible cells or tissues”, Fluids, 3:1 (2018), 9
Khamzin A.A., Nasybullin A.I., “Langevin Approach to the Theory of Dielectric Relaxation of Ice Ih”, Physica A, 508 (2018), 471–480
Khamzin A.A., Nasybullin I A., “Trap-Controlled Proton Hopping: Interpretation of Low-Temperature Dielectric Relaxation of Ice Ih”, Phys. Chem. Chem. Phys., 20:35 (2018), 23142–23150
Lai Y., Liu G., Li Zh., Lin Yu., “Research on the Method of Seed Water Content Measurement Based on Electromagnetic Induction”, Prog. Electromagn. Res. M, 74 (2018), 191–200
A. Palui, A. Ghosh, “Ion dynamics in AgI doped silver selenium-tellurite mixed former glasses”, J. Appl. Phys., 121:12 (2017), 125104