Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 173, Number 2, Pages 314–332
DOI: https://doi.org/10.4213/tmf8336
(Mi tmf8336)
 

This article is cited in 31 scientific papers (total in 31 papers)

Microscopic model of a non-Debye dielectric relaxation: The Cole–Cole law and its generalization

A. A. Khamzin, R. R. Nigmatullin, I. I. Popov

Institute for Physics, Kazan (Volga Region) Federal University, Kazan, Russia
References:
Abstract: Based on a self-similar spatial–temporal structure of the relaxation process, we construct a microscopic model for a non-Debye (nonexponential) dielectric relaxation in complex systems. In this model, we derive the Cole–Cole expression for the complex dielectric permittivity and show that the exponent $\alpha$ involved in that expression is equal to the fractal dimension of the spatial–temporal self-similar ensemble characterizing the structure of the medium and the relaxation process occurring in it. We find a relation between the macroscopic relaxation time and the micro- and mesoparameters of the system. We obtain a generalized Cole–Cole expression for the complex dielectric permittivity involving log-periodic corrections that occur because of a discrete scaling invariance of the fractal structure generating the relaxation process on the mesoscopic scale. The found expression for the dielectric permittivity can be used to interpret dielectric spectra in disordered dielectrics.
Keywords: dielectric relaxation, complex dielectric permittivity, non-Debye dielectric spectrum, fractal, discrete scaling invariance, log-periodic oscillation.
Received: 19.03.2012
Revised: 23.04.2012
English version:
Theoretical and Mathematical Physics, 2012, Volume 173, Issue 2, Pages 1604–1619
DOI: https://doi.org/10.1007/s11232-012-0135-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Khamzin, R. R. Nigmatullin, I. I. Popov, “Microscopic model of a non-Debye dielectric relaxation: The Cole–Cole law and its generalization”, TMF, 173:2 (2012), 314–332; Theoret. and Math. Phys., 173:2 (2012), 1604–1619
Citation in format AMSBIB
\Bibitem{KhaNigPop12}
\by A.~A.~Khamzin, R.~R.~Nigmatullin, I.~I.~Popov
\paper Microscopic model of a~non-Debye dielectric relaxation: The~Cole--Cole law and its generalization
\jour TMF
\yr 2012
\vol 173
\issue 2
\pages 314--332
\mathnet{http://mi.mathnet.ru/tmf8336}
\crossref{https://doi.org/10.4213/tmf8336}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...173.1604K}
\elib{https://elibrary.ru/item.asp?id=20732549}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 173
\issue 2
\pages 1604--1619
\crossref{https://doi.org/10.1007/s11232-012-0135-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312081200008}
\elib{https://elibrary.ru/item.asp?id=20486619}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870768199}
Linking options:
  • https://www.mathnet.ru/eng/tmf8336
  • https://doi.org/10.4213/tmf8336
  • https://www.mathnet.ru/eng/tmf/v173/i2/p314
  • This publication is cited in the following 31 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:932
    Full-text PDF :364
    References:82
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024