Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 173, Number 2, Pages 293–313
DOI: https://doi.org/10.4213/tmf8349
(Mi tmf8349)
 

This article is cited in 7 scientific papers (total in 7 papers)

Schrödinger and Dirac particles in quasi-one-dimensional systems with a Coulomb interaction

K. A. Sveshnikov, D. I. Khomovskii

Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (668 kB) Citations (7)
References:
Abstract: We consider specific features and principal distinctions in the behavior of the energy spectra of Schrödinger and Dirac particles in the regularized “Coulomb”; potential $V_\delta(z)=-q/(|z|+\delta)$ as functions of the cutoff parameter $\delta$ in $1{+}1$ dimensions. We show that the discrete spectrum becomes a quasiperiodic function of $\delta$ for $\delta\ll1$ in such a one-dimensional “hydrogen atom” in the relativistic case. This effect is nonanalytically dependent on the coupling constant and has no nonrelativistic analogue in this case. This property of the Dirac spectral problem explicitly demonstrates the presence of a physically informative energy spectrum for an arbitrarily small $\delta>0$, but also the absence of a regular limit transition $\delta\to0$ for all nonzero $q$. We also show that the three-dimensional Coulomb problem has a similar property of quasiperiodicity with respect to the cutoff parameter for $q=Z\alpha>1$, i.e., in the case where the domain of the Dirac Hamiltonian with the nonregularized potential must be especially refined by specifying boundary conditions as $r\to0$ or by using other methods.
Keywords: relativistic effect, Dirac equation, regularized Coulomb potential, one-dimensional hydrogen atom.
Received: 24.04.2012
Revised: 05.06.2012
English version:
Theoretical and Mathematical Physics, 2012, Volume 173, Issue 2, Pages 1587–1603
DOI: https://doi.org/10.1007/s11232-012-0134-2
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: K. A. Sveshnikov, D. I. Khomovskii, “Schrödinger and Dirac particles in quasi-one-dimensional systems with a Coulomb interaction”, TMF, 173:2 (2012), 293–313; Theoret. and Math. Phys., 173:2 (2012), 1587–1603
Citation in format AMSBIB
\Bibitem{SveKho12}
\by K.~A.~Sveshnikov, D.~I.~Khomovskii
\paper Schr\"odinger and Dirac particles in quasi-one-dimensional systems
with a~Coulomb interaction
\jour TMF
\yr 2012
\vol 173
\issue 2
\pages 293--313
\mathnet{http://mi.mathnet.ru/tmf8349}
\crossref{https://doi.org/10.4213/tmf8349}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3172197}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...173.1587S}
\elib{https://elibrary.ru/item.asp?id=20732548}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 173
\issue 2
\pages 1587--1603
\crossref{https://doi.org/10.1007/s11232-012-0134-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312081200007}
\elib{https://elibrary.ru/item.asp?id=20486583}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870752551}
Linking options:
  • https://www.mathnet.ru/eng/tmf8349
  • https://doi.org/10.4213/tmf8349
  • https://www.mathnet.ru/eng/tmf/v173/i2/p293
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:630
    Full-text PDF :262
    References:56
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024