Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1998, Volume 114, Number 1, Pages 126–136
DOI: https://doi.org/10.4213/tmf833
(Mi tmf833)
 

This article is cited in 10 scientific papers (total in 10 papers)

An approximate two-flow solution to the Boltzmann equation

V. D. Gordevskii

V. N. Karazin Kharkiv National University
References:
Abstract: An explicit approximate solution to the three-dimensional nonlinear Boltzmann equation for rigid spheres is constructed. It has the form of a spatially inhomogeneous linear combination of two Maxwellians corresponding to different densities, temperatures, and mass velocities. It is shown that the integral norm of the discrepancy between the left- and right-hand sides of the equation can be made arbitrarily small by choosing appropriate values of the parameters entering the distribution.
Received: 09.09.1996
Revised: 03.06.1997
English version:
Theoretical and Mathematical Physics, 1998, Volume 114, Issue 1, Pages 99–108
DOI: https://doi.org/10.1007/BF02557112
Bibliographic databases:
Language: Russian
Citation: V. D. Gordevskii, “An approximate two-flow solution to the Boltzmann equation”, TMF, 114:1 (1998), 126–136; Theoret. and Math. Phys., 114:1 (1998), 99–108
Citation in format AMSBIB
\Bibitem{Gor98}
\by V.~D.~Gordevskii
\paper An approximate two-flow solution to the Boltzmann equation
\jour TMF
\yr 1998
\vol 114
\issue 1
\pages 126--136
\mathnet{http://mi.mathnet.ru/tmf833}
\crossref{https://doi.org/10.4213/tmf833}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1756566}
\zmath{https://zbmath.org/?q=an:0967.76083}
\transl
\jour Theoret. and Math. Phys.
\yr 1998
\vol 114
\issue 1
\pages 99--108
\crossref{https://doi.org/10.1007/BF02557112}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000073538400007}
Linking options:
  • https://www.mathnet.ru/eng/tmf833
  • https://doi.org/10.4213/tmf833
  • https://www.mathnet.ru/eng/tmf/v114/i1/p126
  • This publication is cited in the following 10 articles:
    1. N. V. Lemesheva, “Bimodal distributions in the space of a non-uniform weight”, Zhurn. matem. fiz., anal., geom., 11:3 (2015), 267–278  mathnet  crossref  mathscinet
    2. A. A. Gukalov, “Interaction between ”Accelerating-Packing” Flows for the Bryan–Pidduck Model”, Zhurn. matem. fiz., anal., geom., 9:3 (2013), 316–331  mathnet  mathscinet
    3. V. D. Gordevskii, E. S. Sazonova, “Continuum analogue of bimodal distributions”, Theoret. and Math. Phys., 171:3 (2012), 839–847  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. V. D. Gordevskyy, E. S. Sazonova, “Asymmetrical bimodal distributions with screw modes”, Zhurn. matem. fiz., anal., geom., 7:3 (2011), 212–224  mathnet  mathscinet  zmath
    5. V. D. Gordevskii, “Rotating flows with acceleration and compaction in the model of hard spheres”, Theoret. and Math. Phys., 161:2 (2009), 1558–1566  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. V. D. Gordevskii, “Vortices in a Gas of Hard Spheres”, Theoret. and Math. Phys., 135:2 (2003), 704–713  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. Gordevskyy, VD, “Transitional regime between vortical states of a gas”, Nonlinear Analysis-Theory Methods & Applications, 53:3–4 (2003), 481  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    8. V. D. Gordevskii, “Biflow distribution with screw modes”, Theoret. and Math. Phys., 126:2 (2001), 234–249  mathnet  crossref  crossref  mathscinet  zmath  isi
    9. Gordevsky, VD, “Approximate Biflow solutions of the kinetic Bryan-Pidduck equation”, Mathematical Methods in the Applied Sciences, 23:13 (2000), 1121  crossref  mathscinet  zmath  adsnasa  isi
    10. Gordevsky, VD, “Trimodal approximate solutions of the non-linear Boltzmann equation”, Mathematical Methods in the Applied Sciences, 21:16 (1998), 1479  crossref  mathscinet  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:387
    Full-text PDF :223
    References:82
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025