Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1998, Volume 114, Number 1, Pages 115–125
DOI: https://doi.org/10.4213/tmf832
(Mi tmf832)
 

This article is cited in 10 scientific papers (total in 10 papers)

Sine-Gordon equation on the semi-axis

I. T. Habibullin

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
References:
Abstract: We investigate the sine-Gordon equation uttuxx+sinu=0 on the semi-axis x>0. We show that boundary conditions of the forms ux(0,t)=c1cos(u(0,t)/2)+c2sin(u(0,t)/2) and u(0,t)=c are compatible with the Bдcklund transformation. We construct a multisoliton solution satisfying these boundary conditions.
Received: 11.08.1997
English version:
Theoretical and Mathematical Physics, 1998, Volume 114, Issue 1, Pages 90–98
DOI: https://doi.org/10.1007/BF02557111
Bibliographic databases:
Language: Russian
Citation: I. T. Habibullin, “Sine-Gordon equation on the semi-axis”, TMF, 114:1 (1998), 115–125; Theoret. and Math. Phys., 114:1 (1998), 90–98
Citation in format AMSBIB
\Bibitem{Hab98}
\by I.~T.~Habibullin
\paper Sine-Gordon equation on the semi-axis
\jour TMF
\yr 1998
\vol 114
\issue 1
\pages 115--125
\mathnet{http://mi.mathnet.ru/tmf832}
\crossref{https://doi.org/10.4213/tmf832}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1756565}
\zmath{https://zbmath.org/?q=an:0946.35089}
\transl
\jour Theoret. and Math. Phys.
\yr 1998
\vol 114
\issue 1
\pages 90--98
\crossref{https://doi.org/10.1007/BF02557111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000073538400006}
Linking options:
  • https://www.mathnet.ru/eng/tmf832
  • https://doi.org/10.4213/tmf832
  • https://www.mathnet.ru/eng/tmf/v114/i1/p115
  • This publication is cited in the following 10 articles:
    1. Dubrovsky V.G. Topovsky V A., “Multi-Soliton Solutions of Kp Equation With Integrable Boundary Via Partial Differential -Dressing Method”, Physica D, 428 (2021), 133025  crossref  isi
    2. Dubrovsky V.G. Topovsky V A., “Multi-Lump Solutions of Kp Equation With Integrable Boundary Via Partial Derivative-Dressing Method”, Physica D, 414 (2020), 132740  crossref  isi
    3. Lima F.C., Simas F.C., Nobrega K.Z., Gomes A.R., “Boundary Scattering in the Phi(6) Model”, J. High Energy Phys., 2019, no. 10, 147  crossref  isi
    4. Aguirre A.R. Gomes J.F. Ymai L.H. Zimerman A.H., “N=1 Super Sinh-Gordon Model in the Half Line: Breather Solutions”, J. High Energy Phys., 2013, no. 4, 136  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    5. Corrigan E. Zambon C., “Infinite Dimension Reflection Matrices in the sine-Gordon Model with a Boundary”, J. High Energy Phys., 2012, no. 6, 050  crossref  mathscinet  isi  elib  scopus  scopus  scopus
    6. Shamsutdinov, MA, “Dynamics of magnetic kinks in exchange-coupled ferromagnetic layers”, Physics of Metals and Metallography, 108:4 (2009), 327  crossref  adsnasa  isi  scopus  scopus  scopus
    7. Kundu, A, “Changing Solitons in Classical & Quantum Integrable Defect and Variable Mass sine-Gordon Model”, Journal of Nonlinear Mathematical Physics, 15 (2008), 237  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    8. Habibullin, I, “Quantum and classical integrable sine-Gordon model with defect”, Nuclear Physics B, 795:3 (2008), 549  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    9. A. Kundu, “Yang–Baxter algebra and generation of quantum integrable models”, Theoret. and Math. Phys., 151:3 (2007), 831–842  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. V. L. Vereshchagin, “Soliton solutions of an integrable boundary problem on the half-line for the discrete Toda chain”, Theoret. and Math. Phys., 148:3 (2006), 1199–1209  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:495
    Full-text PDF :237
    References:62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025