Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 173, Number 1, Pages 3–37
DOI: https://doi.org/10.4213/tmf8314
(Mi tmf8314)
 

This article is cited in 6 scientific papers (total in 6 papers)

Fusion in the entwined category of Yetter–Drinfeld modules of a rank-1 Nichols algebra

A. M. Semikhatov

Lebedev Physical Institute, RAS, Moscow, Russia
Full-text PDF (905 kB) Citations (6)
References:
Abstract: In the braided context, we rederive a popular nonsemisimple fusion algebra from a Nichols algebra. Together with the decomposition that we find for the product of simple Yetter–Drinfeld modules, this strongly suggests that the relevant Nichols algebra furnishes an equivalence with the triplet W-algebra in the (p,1) logarithmic models of conformal field theory. For this, the category of Yetter–Drinfeld modules is to be regarded as an entwined category (i.e., a category with monodromy but not with braiding).
Keywords: logarithmic conformal field theory, fusion, Nichols algebra, Yetter–Drinfeld module.
Received: 09.11.2011
English version:
Theoretical and Mathematical Physics, 2012, Volume 173, Issue 1, Pages 1329–1358
DOI: https://doi.org/10.1007/s11232-012-0118-2
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. M. Semikhatov, “Fusion in the entwined category of Yetter–Drinfeld modules of a rank-1 Nichols algebra”, TMF, 173:1 (2012), 3–37; Theoret. and Math. Phys., 173:1 (2012), 1329–1358
Citation in format AMSBIB
\Bibitem{Sem12}
\by A.~M.~Semikhatov
\paper Fusion in the~entwined category of Yetter--Drinfeld modules of a~rank-1 Nichols algebra
\jour TMF
\yr 2012
\vol 173
\issue 1
\pages 3--37
\mathnet{http://mi.mathnet.ru/tmf8314}
\crossref{https://doi.org/10.4213/tmf8314}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1739034}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...173.1329S}
\elib{https://elibrary.ru/item.asp?id=20732529}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 173
\issue 1
\pages 1329--1358
\crossref{https://doi.org/10.1007/s11232-012-0118-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310831700001}
\elib{https://elibrary.ru/item.asp?id=20490810}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84869053305}
Linking options:
  • https://www.mathnet.ru/eng/tmf8314
  • https://doi.org/10.4213/tmf8314
  • https://www.mathnet.ru/eng/tmf/v173/i1/p3
  • This publication is cited in the following 6 articles:
    1. Thomas Creutzig, “Tensor categories of weight modules of sl̂2$\widehat{\mathfrak {sl}}_2$ at admissible level”, Journal of London Math Soc, 110:6 (2024)  crossref
    2. Andrey O Krutov, Réamonn Ó Buachalla, Karen R Strung, “Nichols Algebras and Quantum Principal Bundles”, International Mathematics Research Notices, 2023:23 (2023), 20076  crossref
    3. I. Heckenberger, L. Vendramin, “A classification of Nichols algebras of semisimple Yetter–Drinfeld modules over non-abelian groups”, J. Eur. Math. Soc., 19:2 (2017), 299–356  crossref  mathscinet  zmath  isi  scopus
    4. A. M. Semikhatov, I. Yu. Tipunin, “_orig representations of (u)over-bar(q)sl (2|1) at even roots of unity”, J. Math. Phys., 57:2 (2016), 021707  crossref  mathscinet  zmath  isi  elib  scopus
    5. D. Buecher, I. Runkel, “Integrable perturbations of conformal field theories and Yetter–Drinfeld modules”, J. Math. Phys., 55:11 (2014), 111705  crossref  mathscinet  zmath  adsnasa  isi
    6. A. M. Semikhatov, I. Yu. Tipunin, “Logarithmic $\widehat{s\ell}(2)$ CFT models from Nichols algebras: I”, J. Phys. A-Math. Theor., 46:49, SI (2013), 494011  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:924
    Full-text PDF :360
    References:91
    First page:31
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025