Abstract:
We consider one-dimensional monodromy-free Schrödinger operators with quadratically increasing rational potentials. It is shown that all these operators can be obtained from the operator −∂2+x2 by finitely many rational Darboux transformations. An explicit expression is found for the corresponding potentials in terms of Hermite polynomials.
This publication is cited in the following 47 articles:
Patrick Dorey, Clare Dunning, Roberto Tateo, Encyclopedia of Mathematical Physics, 2025, 145
A. A. Golubkov, “Kvazibezmonodromnye sistemy differentsialnykh uravnenii pervogo poryadka s parametrom”, Differentsialnye uravneniya i matematicheskaya fizika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 225, VINITI RAN, M., 2023, 59–68
Sarbarish Chakravarty, Michael Zowada, “Multi-lump wave patterns of KPI via integer partitions”, Physica D: Nonlinear Phenomena, 446 (2023), 133644
Riccardo Conti, Davide Masoero, “On Solutions of the Bethe Ansatz for the Quantum KdV Model”, Commun. Math. Phys., 402:1 (2023), 335
Xue-Wei Yan, Haie Long, Yong Chen, “Prediction of general high-order lump solutions in the Davey–Stewartson II equation”, Proc. R. Soc. A., 479:2280 (2023)
Guangxiong Zhang, Peng Huang, Bao-Feng Feng, Chengfa Wu, “Rogue Waves and Their Patterns in the Vector Nonlinear Schrödinger Equation”, J Nonlinear Sci, 33:6 (2023)
Hussin V., Marquette I., Zelaya K., “Third-Order Ladder Operators, Generalized Okamoto and Exceptional Orthogonal Polynomials”, J. Phys. A-Math. Theor., 55:4 (2022), 045205
Bo Yang, Jianke Yang, “Pattern Transformation in Higher-Order Lumps of the Kadomtsev–Petviashvili I Equation”, J Nonlinear Sci, 32:4 (2022)
A. A. Golubkov, “Monodromy-Quasifree Singular Points of the Sturm–Liouville Equation of Standard Form on the Complex Plane”, Diff Equat, 58:8 (2022), 1021
Sarbarish Chakravarty, Michael Zowada, “Classification of KPI lumps”, J. Phys. A: Math. Theor., 55:21 (2022), 215701
Codruţ Grosu, Corina Grosu, “The Expansion of Wronskian Hermite Polynomials in the Hermite Basis”, SIGMA, 17 (2021), 003, 14 pp.
Conti R., Masoero D., “Counting Monster Potentials”, J. High Energy Phys., 2021, no. 2, 59
A. A. Golubkov, “Inverse problem for the Sturm–Liouville equation with piecewise entire potential and piecewise constant weight on a curve”, Sib. elektron. matem. izv., 18:2 (2021), 951–974
Kudryashov N.A., “Generalized Hermite Polynomials For the Burgers Hierarchy and Point Vortices”, Chaos Solitons Fractals, 151 (2021), 111256
Grosu C. Grosu C., “The Irreducibility of Some Wronskian Hermite Polynomials”, Indag. Math.-New Ser., 32:2 (2021), 456–497
Gomez-Ullate D. Grandati Y. Milson R., “Complete Classification of Rational Solutions of a(2N)-Painleve Systems”, Adv. Math., 385 (2021), 1077707
Chalifour V. Grundland A.M., “General Solution of the Exceptional Hermite Differential Equation and Its Minimal Surface Representation”, Ann. Henri Poincare, 21:10 (2020), 3341–3384
Kasman A., Milson R., “The Adelic Grassmannian and Exceptional Hermite Polynomials”, Math. Phys. Anal. Geom., 23:4 (2020), 40
Clarkson P.A. Gomez-Ullate D. Grandati Y. Milson R., “Cyclic Maya Diagrams and Rational Solutions of Higher Order Painleve Systems”, Stud. Appl. Math., 144:3 (2020), 357–385
Bonneux N. Dunning C. Stevens M., “Coefficients of Wronskian Hermite Polynomials”, Stud. Appl. Math., 144:3 (2020), 245–288