Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1999, Volume 121, Number 3, Pages 374–386
DOI: https://doi.org/10.4213/tmf817
(Mi tmf817)
 

This article is cited in 47 scientific papers (total in 47 papers)

Monodromy-free Schrödinger operators with quadratically increasing potentials

A. A. Oblomkov

M. V. Lomonosov Moscow State University
References:
Abstract: We consider one-dimensional monodromy-free Schrödinger operators with quadratically increasing rational potentials. It is shown that all these operators can be obtained from the operator 2+x2 by finitely many rational Darboux transformations. An explicit expression is found for the corresponding potentials in terms of Hermite polynomials.
Received: 23.03.1999
English version:
Theoretical and Mathematical Physics, 1999, Volume 121, Issue 3, Pages 1574–1584
DOI: https://doi.org/10.1007/BF02557204
Bibliographic databases:
Language: Russian
Citation: A. A. Oblomkov, “Monodromy-free Schrödinger operators with quadratically increasing potentials”, TMF, 121:3 (1999), 374–386; Theoret. and Math. Phys., 121:3 (1999), 1574–1584
Citation in format AMSBIB
\Bibitem{Obl99}
\by A.~A.~Oblomkov
\paper Monodromy-free Schr\"odinger operators with quadratically increasing potentials
\jour TMF
\yr 1999
\vol 121
\issue 3
\pages 374--386
\mathnet{http://mi.mathnet.ru/tmf817}
\crossref{https://doi.org/10.4213/tmf817}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1761140}
\zmath{https://zbmath.org/?q=an:0978.34077}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 121
\issue 3
\pages 1574--1584
\crossref{https://doi.org/10.1007/BF02557204}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085306100003}
Linking options:
  • https://www.mathnet.ru/eng/tmf817
  • https://doi.org/10.4213/tmf817
  • https://www.mathnet.ru/eng/tmf/v121/i3/p374
  • This publication is cited in the following 47 articles:
    1. Patrick Dorey, Clare Dunning, Roberto Tateo, Encyclopedia of Mathematical Physics, 2025, 145  crossref
    2. A. A. Golubkov, “Kvazibezmonodromnye sistemy differentsialnykh uravnenii pervogo poryadka s parametrom”, Differentsialnye uravneniya i matematicheskaya fizika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 225, VINITI RAN, M., 2023, 59–68  mathnet  crossref
    3. Sarbarish Chakravarty, Michael Zowada, “Multi-lump wave patterns of KPI via integer partitions”, Physica D: Nonlinear Phenomena, 446 (2023), 133644  crossref
    4. Riccardo Conti, Davide Masoero, “On Solutions of the Bethe Ansatz for the Quantum KdV Model”, Commun. Math. Phys., 402:1 (2023), 335  crossref
    5. Xue-Wei Yan, Haie Long, Yong Chen, “Prediction of general high-order lump solutions in the Davey–Stewartson II equation”, Proc. R. Soc. A., 479:2280 (2023)  crossref
    6. Guangxiong Zhang, Peng Huang, Bao-Feng Feng, Chengfa Wu, “Rogue Waves and Their Patterns in the Vector Nonlinear Schrödinger Equation”, J Nonlinear Sci, 33:6 (2023)  crossref
    7. Hussin V., Marquette I., Zelaya K., “Third-Order Ladder Operators, Generalized Okamoto and Exceptional Orthogonal Polynomials”, J. Phys. A-Math. Theor., 55:4 (2022), 045205  crossref  isi
    8. Bo Yang, Jianke Yang, “Pattern Transformation in Higher-Order Lumps of the Kadomtsev–Petviashvili I Equation”, J Nonlinear Sci, 32:4 (2022)  crossref
    9. A. A. Golubkov, “Monodromy-Quasifree Singular Points of the Sturm–Liouville Equation of Standard Form on the Complex Plane”, Diff Equat, 58:8 (2022), 1021  crossref
    10. Sarbarish Chakravarty, Michael Zowada, “Classification of KPI lumps”, J. Phys. A: Math. Theor., 55:21 (2022), 215701  crossref
    11. Codruţ Grosu, Corina Grosu, “The Expansion of Wronskian Hermite Polynomials in the Hermite Basis”, SIGMA, 17 (2021), 003, 14 pp.  mathnet  crossref
    12. Conti R., Masoero D., “Counting Monster Potentials”, J. High Energy Phys., 2021, no. 2, 59  crossref  isi
    13. A. A. Golubkov, “Inverse problem for the Sturm–Liouville equation with piecewise entire potential and piecewise constant weight on a curve”, Sib. elektron. matem. izv., 18:2 (2021), 951–974  mathnet  crossref
    14. Kudryashov N.A., “Generalized Hermite Polynomials For the Burgers Hierarchy and Point Vortices”, Chaos Solitons Fractals, 151 (2021), 111256  crossref  isi
    15. Grosu C. Grosu C., “The Irreducibility of Some Wronskian Hermite Polynomials”, Indag. Math.-New Ser., 32:2 (2021), 456–497  crossref  isi
    16. Gomez-Ullate D. Grandati Y. Milson R., “Complete Classification of Rational Solutions of a(2N)-Painleve Systems”, Adv. Math., 385 (2021), 1077707  crossref  isi
    17. Chalifour V. Grundland A.M., “General Solution of the Exceptional Hermite Differential Equation and Its Minimal Surface Representation”, Ann. Henri Poincare, 21:10 (2020), 3341–3384  crossref  isi
    18. Kasman A., Milson R., “The Adelic Grassmannian and Exceptional Hermite Polynomials”, Math. Phys. Anal. Geom., 23:4 (2020), 40  crossref  isi
    19. Clarkson P.A. Gomez-Ullate D. Grandati Y. Milson R., “Cyclic Maya Diagrams and Rational Solutions of Higher Order Painleve Systems”, Stud. Appl. Math., 144:3 (2020), 357–385  crossref  isi
    20. Bonneux N. Dunning C. Stevens M., “Coefficients of Wronskian Hermite Polynomials”, Stud. Appl. Math., 144:3 (2020), 245–288  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:492
    Full-text PDF :251
    References:64
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025