Citation:
O. I. Zavialov, A. M. Malokostov, “Wigner function for free relativistic particles”, TMF, 119:1 (1999), 67–72; Theoret. and Math. Phys., 119:1 (1999), 448–453
This publication is cited in the following 13 articles:
F Daem, A Matzkin, “Tunneling dynamics of the relativistic Schrödinger/Salpeter equation”, Phys. Scr., 100:1 (2025), 015216
Przanowski M., Tosiek J., Turrubiates F.J., “The Weyl - Wigner - Moyal Formalism on a Discrete Phase Space. II. the Photon Wigner Function”, Fortschritte Phys.-Prog. Phys., 69:1 (2021), 2000061, 2000061
Filinov V. Larkin A. Fortov V., “Screening Properties of Quark-Gluon Plasma Obtained From Distribution and Correlation Functions of the Constituent Quasiparticle Model”, Phys. Rev. C, 101:2 (2020), 025202
Karlovets D., “On Wigner Function of a Vortex Electron”, J. Phys. A-Math. Theor., 52:5 (2019), 05LT01
A. S. Larkin, V. S. Filinov, “Monte Carlo simulation of the thermodynamic properties of hydrogen plasma with the Wigner function”, High Temperature, 57:5 (2019), 609–616
Kowalski K., Rembielinski J., Gazeau J.-P., “On the Coherent States For a Relativistic Scalar Particle”, Ann. Phys., 399 (2018), 204–223
Karlovets D.V., “Scattering of wave packets with phases”, J. High Energy Phys., 2017, no. 3, 049
Kowalski K., Rembielinski J., “The Wigner function in the relativistic quantum mechanics”, Ann. Phys., 375 (2016), 1–15
O. I. Zavialov, “Nonlinear Representations of the Lorentz Group in Quantum Field Theory”, Theoret. and Math. Phys., 127:1 (2001), 471–482
O. I. Zavialov, “On the Mechanism for Nonlinear Representations of the Lorentz Group Arising in Quantum Field Theory”, Theoret. and Math. Phys., 128:3 (2001), 1176–1180
Segev B., “Causality and propagation in the Wigner, Husimi, Glauber, and Kirkwood phase-space representations”, Phys. Rev. A, 63:5 (2001), 052114
O. I. Zavialov, “Relativistic Wigner Function and Nonlinear Representations of the Lorentz Group”, Proc. Steklov Inst. Math., 228 (2000), 126–134
O. I. Zavialov, A. M. Malokostov, “Quantum field theory with non-Fock asymptotic fields: the existence of the S-matrix”, Theoret. and Math. Phys., 121:1 (1999), 1281–1293