Typesetting math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1999, Volume 119, Number 1, Pages 67–72
DOI: https://doi.org/10.4213/tmf728
(Mi tmf728)
 

This article is cited in 13 scientific papers (total in 13 papers)

Wigner function for free relativistic particles

O. I. Zavialov, A. M. Malokostov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: A generalization of the Wigner function for the case of a free particle with the “relativistic” Hamiltonian p2+m2 is given.
Received: 17.09.1998
English version:
Theoretical and Mathematical Physics, 1999, Volume 119, Issue 1, Pages 448–453
DOI: https://doi.org/10.1007/BF02557343
Bibliographic databases:
Language: Russian
Citation: O. I. Zavialov, A. M. Malokostov, “Wigner function for free relativistic particles”, TMF, 119:1 (1999), 67–72; Theoret. and Math. Phys., 119:1 (1999), 448–453
Citation in format AMSBIB
\Bibitem{ZavMal99}
\by O.~I.~Zavialov, A.~M.~Malokostov
\paper Wigner function for free relativistic particles
\jour TMF
\yr 1999
\vol 119
\issue 1
\pages 67--72
\mathnet{http://mi.mathnet.ru/tmf728}
\crossref{https://doi.org/10.4213/tmf728}
\zmath{https://zbmath.org/?q=an:0952.81010}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 119
\issue 1
\pages 448--453
\crossref{https://doi.org/10.1007/BF02557343}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000081250900006}
Linking options:
  • https://www.mathnet.ru/eng/tmf728
  • https://doi.org/10.4213/tmf728
  • https://www.mathnet.ru/eng/tmf/v119/i1/p67
  • This publication is cited in the following 13 articles:
    1. F Daem, A Matzkin, “Tunneling dynamics of the relativistic Schrödinger/Salpeter equation”, Phys. Scr., 100:1 (2025), 015216  crossref
    2. Przanowski M., Tosiek J., Turrubiates F.J., “The Weyl - Wigner - Moyal Formalism on a Discrete Phase Space. II. the Photon Wigner Function”, Fortschritte Phys.-Prog. Phys., 69:1 (2021), 2000061, 2000061  crossref  isi
    3. Filinov V. Larkin A. Fortov V., “Screening Properties of Quark-Gluon Plasma Obtained From Distribution and Correlation Functions of the Constituent Quasiparticle Model”, Phys. Rev. C, 101:2 (2020), 025202  crossref  isi
    4. Karlovets D., “On Wigner Function of a Vortex Electron”, J. Phys. A-Math. Theor., 52:5 (2019), 05LT01  crossref  isi  scopus
    5. A. S. Larkin, V. S. Filinov, “Monte Carlo simulation of the thermodynamic properties of hydrogen plasma with the Wigner function”, High Temperature, 57:5 (2019), 609–616  mathnet  crossref  crossref  isi  elib
    6. Kowalski K., Rembielinski J., Gazeau J.-P., “On the Coherent States For a Relativistic Scalar Particle”, Ann. Phys., 399 (2018), 204–223  crossref  mathscinet  zmath  isi  scopus
    7. Karlovets D.V., “Scattering of wave packets with phases”, J. High Energy Phys., 2017, no. 3, 049  crossref  mathscinet  isi  scopus
    8. Kowalski K., Rembielinski J., “The Wigner function in the relativistic quantum mechanics”, Ann. Phys., 375 (2016), 1–15  crossref  mathscinet  zmath  isi  elib  scopus
    9. O. I. Zavialov, “Nonlinear Representations of the Lorentz Group in Quantum Field Theory”, Theoret. and Math. Phys., 127:1 (2001), 471–482  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. O. I. Zavialov, “On the Mechanism for Nonlinear Representations of the Lorentz Group Arising in Quantum Field Theory”, Theoret. and Math. Phys., 128:3 (2001), 1176–1180  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. Segev B., “Causality and propagation in the Wigner, Husimi, Glauber, and Kirkwood phase-space representations”, Phys. Rev. A, 63:5 (2001), 052114  crossref  isi
    12. O. I. Zavialov, “Relativistic Wigner Function and Nonlinear Representations of the Lorentz Group”, Proc. Steklov Inst. Math., 228 (2000), 126–134  mathnet  mathscinet  zmath
    13. O. I. Zavialov, A. M. Malokostov, “Quantum field theory with non-Fock asymptotic fields: the existence of the S-matrix”, Theoret. and Math. Phys., 121:1 (1999), 1281–1293  mathnet  crossref  crossref  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:480
    Full-text PDF :231
    References:85
    First page:4
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025