Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1999, Volume 119, Number 1, Pages 55–66
DOI: https://doi.org/10.4213/tmf727
(Mi tmf727)
 

This article is cited in 49 scientific papers (total in 49 papers)

Renormalization group, causality, and nonpower perturbation expansion in QFT

D. V. Shirkov

Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics
References:
Abstract: The structure of the QFT expansion is studied in the framework of a new “invariant analytic” version of the perturbative QCD. Here, an invariant coupling constant $a(Q^2/\Lambda^2)=\beta_1\alpha_s(Q^2)/(4\pi)$ becomes a $Q^2$-analytic invariant function $a_{\mathrm{an}}(Q^2/\Lambda^2)\equiv\mathcal A(x)$, which, by construction, is free of ghost singularities because it incorporates some nonperturbative structures. In the framework of the “analyticized” perturbation theory, an expansion for an observable $F$, instead of powers of the analytic invariant charge $\mathcal A(x)$, may contain specific functions $\mathcal A_n(x)=\left[a^n(x)\right]_{\mathrm{an}}$, the "$n$th power of $a(x)$ analyticized as a whole." Functions $A_{n>2}(x)$ for small $Q^2\leq\Lambda^2$ oscillate, which results in weak loop and scheme dependences. Because of the analyticity requirement, the perturbation series for $F(x)$ becomes an asymptotic expansion á la Erdélyi using a nonpower set $\{\mathcal A_n(x)\}$. The probable ambiguities of the invariant analyticization procedure and the possible inconsistency of some of its versions with the renormalization group structure are also discussed.
Received: 14.10.1998
English version:
Theoretical and Mathematical Physics, 1999, Volume 119, Issue 1, Pages 438–447
DOI: https://doi.org/10.1007/BF02557342
Bibliographic databases:
Language: Russian
Citation: D. V. Shirkov, “Renormalization group, causality, and nonpower perturbation expansion in QFT”, TMF, 119:1 (1999), 55–66; Theoret. and Math. Phys., 119:1 (1999), 438–447
Citation in format AMSBIB
\Bibitem{Shi99}
\by D.~V.~Shirkov
\paper Renormalization group, causality, and nonpower perturbation expansion in QFT
\jour TMF
\yr 1999
\vol 119
\issue 1
\pages 55--66
\mathnet{http://mi.mathnet.ru/tmf727}
\crossref{https://doi.org/10.4213/tmf727}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1702804}
\zmath{https://zbmath.org/?q=an:0952.81020}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 119
\issue 1
\pages 438--447
\crossref{https://doi.org/10.1007/BF02557342}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000081250900005}
Linking options:
  • https://www.mathnet.ru/eng/tmf727
  • https://doi.org/10.4213/tmf727
  • https://www.mathnet.ru/eng/tmf/v119/i1/p55
  • This publication is cited in the following 49 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:668
    Full-text PDF :284
    References:80
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024