Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1999, Volume 118, Number 1, Pages 105–125
DOI: https://doi.org/10.4213/tmf689
(Mi tmf689)
 

This article is cited in 13 scientific papers (total in 13 papers)

Two-time temperature Green's functions in kinetic theory and molecular hydrodynamics: I. The chain of equations for the irreducible functions

Yu. A. Tserkovnikov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We develop a scheme for constructing chains of equations for the irreducible Green's functions. The structure of the equations allows going beyond the usual perturbation theory in solving specific problems. We obtain general relations that allow any correlation function to be expressed through solutions of an infinite chain of equations for the irreducible functions.
Received: 11.06.1998
English version:
Theoretical and Mathematical Physics, 1999, Volume 118, Issue 1, Pages 85–100
DOI: https://doi.org/10.1007/BF02557198
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. A. Tserkovnikov, “Two-time temperature Green's functions in kinetic theory and molecular hydrodynamics: I. The chain of equations for the irreducible functions”, TMF, 118:1 (1999), 105–125; Theoret. and Math. Phys., 118:1 (1999), 85–100
Citation in format AMSBIB
\Bibitem{Tse99}
\by Yu.~A.~Tserkovnikov
\paper Two-time temperature Green's functions in kinetic theory and molecular hydrodynamics: I. The chain of equations for the irreducible functions
\jour TMF
\yr 1999
\vol 118
\issue 1
\pages 105--125
\mathnet{http://mi.mathnet.ru/tmf689}
\crossref{https://doi.org/10.4213/tmf689}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1702832}
\zmath{https://zbmath.org/?q=an:0942.82026}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 118
\issue 1
\pages 85--100
\crossref{https://doi.org/10.1007/BF02557198}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000079262300008}
Linking options:
  • https://www.mathnet.ru/eng/tmf689
  • https://doi.org/10.4213/tmf689
  • https://www.mathnet.ru/eng/tmf/v118/i1/p105
  • This publication is cited in the following 13 articles:
    1. Hu-Wei Jia, Wen-Jun Liu, Yue-Hong Wu, Kou-Han Ma, Lei Wang, Ning-Hua Tong, “Thermal broadening of the phonon spectral function in classical lattice models: Projective truncation approximation”, Phys. Rev. B, 111:4 (2025)  crossref
    2. Kou-Han Ma, Yan-Jiang Guo, Lei Wang, Ning-Hua Tong, “Projective-truncation-approximation study of the one-dimensionalϕ4lattice model”, Phys. Rev. E, 106:1 (2022)  crossref
    3. Ma K.-H., Tong N.-H., “Interacting Spinless Fermions on the Square Lattice: Charge Order, Phase Separation, and Superconductivity”, Phys. Rev. B, 104:15 (2021), 155116  crossref  isi
    4. Fan P., Tong N.-H., “Controllable Precision of the Projective Truncation Approximation For Green'S Functions”, Chin. Phys. B, 28:4 (2019), 047102  crossref  isi  scopus
    5. Gorski G., Kucab K., “Influence of Assisted Hopping Interaction on the Linear Conductance of Quantum Dot”, Physica E, 111 (2019), 190–200  crossref  isi  scopus
    6. Ma K.-H., Tong N.-H., “Improved Strong-Coupling Perturbation Theory of the Symmetric Anderson Impurity Model”, Mod. Phys. Lett. B, 33:27 (2019), 1950332  crossref  isi
    7. Fan P., Yang K., Ma K.-H., Tong N.-H., “Projective Truncation Approximation For Equations of Motion of Two-Time Green'S Functions”, Phys. Rev. B, 97:16 (2018), 165140  crossref  isi  scopus  scopus  scopus
    8. Ochoa M.A. Galperin M. Ratner M.A., “A Non-Equilibrium Equation-of-Motion Approach To Quantum Transport Utilizing Projection Operators”, J. Phys.-Condes. Matter, 26:45 (2014), 455301  crossref  adsnasa  isi  scopus  scopus  scopus
    9. White A.J., Ochoa M.A., Galperin M., “Nonequilibrium Atomic Limit For Transport and Optical Response of Molecular Junctions”, J. Phys. Chem. C, 118:21 (2014), 11159–11173  crossref  isi  scopus  scopus  scopus
    10. B. B. Markiv, I. P. Omelyan, M. V. Tokarchuk, “Nonequilibrium statistical operator in the generalized molecular hydrodynamics of fluids”, Theoret. and Math. Phys., 154:1 (2008), 75–84  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    11. Yu. A. Tserkovnikov, “Two-Time Temperature Green's Functions in Kinetic Theory and Molecular Hydrodynamics: III. Taking the Interaction of Hydrodynamic Fluctuations into Account”, Theoret. and Math. Phys., 129:3 (2001), 1669–1693  mathnet  crossref  crossref  mathscinet  zmath  isi
    12. Yu. A. Tserkovnikov, “A Chain of Equations for Two-Time Irreducible Green Functions in Molecular Hydrodynamics”, Proc. Steklov Inst. Math., 228 (2000), 274–285  mathnet  mathscinet  zmath
    13. Yu. A. Tserkovnikov, “Two-time temperature Green's functions in kinetic theory and molecular hydrodynamics: II. Equations for pair-interaction systems”, Theoret. and Math. Phys., 119:1 (1999), 511–531  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:474
    Full-text PDF :266
    References:79
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025