Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 169, Number 3, Pages 352–367
DOI: https://doi.org/10.4213/tmf6735
(Mi tmf6735)
 

This article is cited in 3 scientific papers (total in 3 papers)

Deriving hydrodynamic equations for lattice systems

T. V. Dudnikova

Elektrostal Polytechnical Institute, Elektrostal, Moscow Oblast, Russia
Full-text PDF (511 kB) Citations (3)
References:
Abstract: We study the dynamics of lattice systems in $\mathbb Z^d$, $d\ge1$. We assume that the initial data are random functions. We introduce the system of initial measures $\{\mu_0^{\varepsilon},\;\varepsilon>0\}$. The measures $\mu_0^{\varepsilon}$ are assumed to be locally homogeneous or “slowly changing” under spatial shifts of the order $o(\varepsilon^{-1})$ and inhomogeneous under shifts of the order $\varepsilon^{-1}$. Moreover, correlations of the measures $\mu_0^{\varepsilon}$ decrease uniformly in $\varepsilon$ at large distances. For all $\tau\in\mathbb R\setminus0$, $r\in\mathbb R^d$, and $\kappa>0$, we consider distributions of a random solution at the instants $t=\tau/\varepsilon^{\kappa}$ at points close to $[r/\varepsilon]\in\mathbb Z^d$. Our main goal is to study the asymptotic behavior of these distributions as $\varepsilon\to0$ and to derive the limit hydrodynamic equations of the Euler and Navier–Stokes type.
Keywords: harmonic crystal, Cauchy problem, random initial data, weak convergence of measures, Gaussian measure, hydrodynamic limit, Euler equation, Navier–Stokes equation.
Received: 19.01.2011
Revised: 26.02.2011
English version:
Theoretical and Mathematical Physics, 2011, Volume 169, Issue 3, Pages 1668–1682
DOI: https://doi.org/10.1007/s11232-011-0144-5
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: T. V. Dudnikova, “Deriving hydrodynamic equations for lattice systems”, TMF, 169:3 (2011), 352–367; Theoret. and Math. Phys., 169:3 (2011), 1668–1682
Citation in format AMSBIB
\Bibitem{Dud11}
\by T.~V.~Dudnikova
\paper Deriving hydrodynamic equations for lattice systems
\jour TMF
\yr 2011
\vol 169
\issue 3
\pages 352--367
\mathnet{http://mi.mathnet.ru/tmf6735}
\crossref{https://doi.org/10.4213/tmf6735}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3171197}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 169
\issue 3
\pages 1668--1682
\crossref{https://doi.org/10.1007/s11232-011-0144-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300146300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855552483}
Linking options:
  • https://www.mathnet.ru/eng/tmf6735
  • https://doi.org/10.4213/tmf6735
  • https://www.mathnet.ru/eng/tmf/v169/i3/p352
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:408
    Full-text PDF :185
    References:62
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024