Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 169, Number 3, Pages 352–367
DOI: https://doi.org/10.4213/tmf6735
(Mi tmf6735)
 

This article is cited in 4 scientific papers (total in 4 papers)

Deriving hydrodynamic equations for lattice systems

T. V. Dudnikova

Elektrostal Polytechnical Institute, Elektrostal, Moscow Oblast, Russia
Full-text PDF (511 kB) Citations (4)
References:
Abstract: We study the dynamics of lattice systems in Zd, d1. We assume that the initial data are random functions. We introduce the system of initial measures {με0,ε>0}. The measures με0 are assumed to be locally homogeneous or “slowly changing” under spatial shifts of the order o(ε1) and inhomogeneous under shifts of the order ε1. Moreover, correlations of the measures με0 decrease uniformly in ε at large distances. For all τR0, rRd, and κ>0, we consider distributions of a random solution at the instants t=τ/εκ at points close to [r/ε]Zd. Our main goal is to study the asymptotic behavior of these distributions as ε0 and to derive the limit hydrodynamic equations of the Euler and Navier–Stokes type.
Keywords: harmonic crystal, Cauchy problem, random initial data, weak convergence of measures, Gaussian measure, hydrodynamic limit, Euler equation, Navier–Stokes equation.
Received: 19.01.2011
Revised: 26.02.2011
English version:
Theoretical and Mathematical Physics, 2011, Volume 169, Issue 3, Pages 1668–1682
DOI: https://doi.org/10.1007/s11232-011-0144-5
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: T. V. Dudnikova, “Deriving hydrodynamic equations for lattice systems”, TMF, 169:3 (2011), 352–367; Theoret. and Math. Phys., 169:3 (2011), 1668–1682
Citation in format AMSBIB
\Bibitem{Dud11}
\by T.~V.~Dudnikova
\paper Deriving hydrodynamic equations for lattice systems
\jour TMF
\yr 2011
\vol 169
\issue 3
\pages 352--367
\mathnet{http://mi.mathnet.ru/tmf6735}
\crossref{https://doi.org/10.4213/tmf6735}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3171197}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 169
\issue 3
\pages 1668--1682
\crossref{https://doi.org/10.1007/s11232-011-0144-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300146300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855552483}
Linking options:
  • https://www.mathnet.ru/eng/tmf6735
  • https://doi.org/10.4213/tmf6735
  • https://www.mathnet.ru/eng/tmf/v169/i3/p352
  • This publication is cited in the following 4 articles:
    1. T.V. Dudnikova, “Caricature of Hydrodynamics for the Harmonic Crystal Coupled to a Klein–Gordon Field”, Russ. J. Math. Phys., 31:4 (2024), 606  crossref
    2. T.V. Dudnikova, “Transport Equation for the Harmonic Crystal Coupled to a Klein–Gordon Field”, Russ. J. Math. Phys., 30:4 (2023), 501  crossref
    3. T. V. Dudnikova, “Local Stationarity for the Klein—Gordon Equations”, J Math Sci, 269:2 (2023), 173  crossref
    4. T. V. Dudnikova, “Caricature of hydrodynamics for lattice dynamics”, P-Adic Num Ultrametr Anal Appl, 4:4 (2012), 245  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:441
    Full-text PDF :194
    References:68
    First page:15
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025