Abstract:
We consider a family of operators $H_{\gamma\mu}(k)$, $k\in\mathbb T^d:= (-\pi,\pi]^d$, associated with the Hamiltonian of a system consisting of at most two particles on a $d$-dimensional lattice $\mathbb Z^d$, interacting via both a pair contact potential $(\mu>0)$ and creation and annihilation operators $(\gamma>0)$. We prove the existence of a unique eigenvalue of $H_{\gamma\mu}(k)$, $k\in\mathbb T^d$, or its absence depending on both the interaction parameters $\gamma,\mu\ge0$ and the system quasimomentum $k\in\mathbb T^d$. We show that the corresponding eigenvector is analytic. We establish that the eigenvalue and eigenvector are analytic functions of the quasimomentum $k\in\mathbb T^d$ in the existence domain $G\subset\mathbb T^d$.
Citation:
S. N. Lakaev, Sh. M. Latipov, “Existence and analyticity of eigenvalues of a two-channel molecular resonance model”, TMF, 169:3 (2011), 341–351; Theoret. and Math. Phys., 169:3 (2011), 1658–1667