Abstract:
We consider a family of operators Hγμ(k), k∈Td:=(−π,π]d, associated with the Hamiltonian of a system consisting of at most two particles on a d-dimensional lattice Zd, interacting via both a pair contact potential (μ>0) and creation and annihilation operators (γ>0). We prove the existence of a unique eigenvalue of Hγμ(k), k∈Td, or its absence depending on both the interaction parameters γ,μ⩾0 and the system quasimomentum k∈Td. We show that the corresponding eigenvector is analytic. We establish that the eigenvalue and eigenvector are analytic functions of the quasimomentum k∈Td in the existence domain G⊂Td.
Citation:
S. N. Lakaev, Sh. M. Latipov, “Existence and analyticity of eigenvalues of a two-channel molecular resonance model”, TMF, 169:3 (2011), 341–351; Theoret. and Math. Phys., 169:3 (2011), 1658–1667
\Bibitem{LakLat11}
\by S.~N.~Lakaev, Sh.~M.~Latipov
\paper Existence and analyticity of eigenvalues of a~two-channel molecular resonance model
\jour TMF
\yr 2011
\vol 169
\issue 3
\pages 341--351
\mathnet{http://mi.mathnet.ru/tmf6734}
\crossref{https://doi.org/10.4213/tmf6734}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3171196}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...169.1658L}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 169
\issue 3
\pages 1658--1667
\crossref{https://doi.org/10.1007/s11232-011-0143-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300146300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855529776}
Linking options:
https://www.mathnet.ru/eng/tmf6734
https://doi.org/10.4213/tmf6734
https://www.mathnet.ru/eng/tmf/v169/i3/p341
This publication is cited in the following 3 articles:
T. Kh. Rasulov, E. B. Dilmurodov, “Osnovnye svoistva uravneniya Faddeeva dlya 2×2 operatornykh matrits”, Izv. vuzov. Matem., 2023, no. 12, 53–58
T. H. Rasulov, E. B. Dilmurodov, “Main Properties of the Faddeev Equation for 2 × 2 Operator Matrices”, Russ Math., 67:12 (2023), 47
S. N. Lakaev, A. T. Boltaev, “Threshold phenomena in the spectrum of the two-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 198:3 (2019), 363–375