Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 169, Number 3, Pages 341–351
DOI: https://doi.org/10.4213/tmf6734
(Mi tmf6734)
 

This article is cited in 3 scientific papers (total in 3 papers)

Existence and analyticity of eigenvalues of a two-channel molecular resonance model

S. N. Lakaevab, Sh. M. Latipova

a Samarkand State University, Samarkand, Uzbekistan
b Samarkand Branch, Academy of Sciences of the Republic of Uzbekistan, Samarkand, Uzbekistan
Full-text PDF (420 kB) Citations (3)
References:
Abstract: We consider a family of operators Hγμ(k), kTd:=(π,π]d, associated with the Hamiltonian of a system consisting of at most two particles on a d-dimensional lattice Zd, interacting via both a pair contact potential (μ>0) and creation and annihilation operators (γ>0). We prove the existence of a unique eigenvalue of Hγμ(k), kTd, or its absence depending on both the interaction parameters γ,μ0 and the system quasimomentum kTd. We show that the corresponding eigenvector is analytic. We establish that the eigenvalue and eigenvector are analytic functions of the quasimomentum kTd in the existence domain GTd.
Keywords: Hamiltonian, creation operator, eigenvalue, bound state, lattice.
Received: 17.12.2010
English version:
Theoretical and Mathematical Physics, 2011, Volume 169, Issue 3, Pages 1658–1667
DOI: https://doi.org/10.1007/s11232-011-0143-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. N. Lakaev, Sh. M. Latipov, “Existence and analyticity of eigenvalues of a two-channel molecular resonance model”, TMF, 169:3 (2011), 341–351; Theoret. and Math. Phys., 169:3 (2011), 1658–1667
Citation in format AMSBIB
\Bibitem{LakLat11}
\by S.~N.~Lakaev, Sh.~M.~Latipov
\paper Existence and analyticity of eigenvalues of a~two-channel molecular resonance model
\jour TMF
\yr 2011
\vol 169
\issue 3
\pages 341--351
\mathnet{http://mi.mathnet.ru/tmf6734}
\crossref{https://doi.org/10.4213/tmf6734}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3171196}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...169.1658L}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 169
\issue 3
\pages 1658--1667
\crossref{https://doi.org/10.1007/s11232-011-0143-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300146300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855529776}
Linking options:
  • https://www.mathnet.ru/eng/tmf6734
  • https://doi.org/10.4213/tmf6734
  • https://www.mathnet.ru/eng/tmf/v169/i3/p341
  • This publication is cited in the following 3 articles:
    1. T. Kh. Rasulov, E. B. Dilmurodov, “Osnovnye svoistva uravneniya Faddeeva dlya 2×2 operatornykh matrits”, Izv. vuzov. Matem., 2023, no. 12, 53–58  mathnet  crossref
    2. T. H. Rasulov, E. B. Dilmurodov, “Main Properties of the Faddeev Equation for 2 × 2 Operator Matrices”, Russ Math., 67:12 (2023), 47  crossref
    3. S. N. Lakaev, A. T. Boltaev, “Threshold phenomena in the spectrum of the two-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 198:3 (2019), 363–375  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:610
    Full-text PDF :243
    References:82
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025