Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 169, Number 3, Pages 341–351
DOI: https://doi.org/10.4213/tmf6734
(Mi tmf6734)
 

This article is cited in 3 scientific papers (total in 3 papers)

Existence and analyticity of eigenvalues of a two-channel molecular resonance model

S. N. Lakaevab, Sh. M. Latipova

a Samarkand State University, Samarkand, Uzbekistan
b Samarkand Branch, Academy of Sciences of the Republic of Uzbekistan, Samarkand, Uzbekistan
Full-text PDF (420 kB) Citations (3)
References:
Abstract: We consider a family of operators $H_{\gamma\mu}(k)$, $k\in\mathbb T^d:= (-\pi,\pi]^d$, associated with the Hamiltonian of a system consisting of at most two particles on a $d$-dimensional lattice $\mathbb Z^d$, interacting via both a pair contact potential $(\mu>0)$ and creation and annihilation operators $(\gamma>0)$. We prove the existence of a unique eigenvalue of $H_{\gamma\mu}(k)$, $k\in\mathbb T^d$, or its absence depending on both the interaction parameters $\gamma,\mu\ge0$ and the system quasimomentum $k\in\mathbb T^d$. We show that the corresponding eigenvector is analytic. We establish that the eigenvalue and eigenvector are analytic functions of the quasimomentum $k\in\mathbb T^d$ in the existence domain $G\subset\mathbb T^d$.
Keywords: Hamiltonian, creation operator, eigenvalue, bound state, lattice.
Received: 17.12.2010
English version:
Theoretical and Mathematical Physics, 2011, Volume 169, Issue 3, Pages 1658–1667
DOI: https://doi.org/10.1007/s11232-011-0143-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. N. Lakaev, Sh. M. Latipov, “Existence and analyticity of eigenvalues of a two-channel molecular resonance model”, TMF, 169:3 (2011), 341–351; Theoret. and Math. Phys., 169:3 (2011), 1658–1667
Citation in format AMSBIB
\Bibitem{LakLat11}
\by S.~N.~Lakaev, Sh.~M.~Latipov
\paper Existence and analyticity of eigenvalues of a~two-channel molecular resonance model
\jour TMF
\yr 2011
\vol 169
\issue 3
\pages 341--351
\mathnet{http://mi.mathnet.ru/tmf6734}
\crossref{https://doi.org/10.4213/tmf6734}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3171196}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...169.1658L}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 169
\issue 3
\pages 1658--1667
\crossref{https://doi.org/10.1007/s11232-011-0143-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300146300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855529776}
Linking options:
  • https://www.mathnet.ru/eng/tmf6734
  • https://doi.org/10.4213/tmf6734
  • https://www.mathnet.ru/eng/tmf/v169/i3/p341
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:576
    Full-text PDF :233
    References:76
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024