Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 167, Number 3, Pages 377–393
DOI: https://doi.org/10.4213/tmf6648
(Mi tmf6648)
 

This article is cited in 11 scientific papers (total in 11 papers)

New exact solutions of two-dimensional integrable equations using the ¯-dressing method

V. G. Dubrovsky, A. V. Topovsky, M. Yu. Basalaev

Novosibirsk State Technical University, Novosibirsk, Russia
References:
Abstract: We review new classes of exact solutions with functional parameters with constant asymptotic values at infinity of the Nizhnik–Veselov–Novikov equation and new classes of exact solutions with functional parameters of two-dimensional generalizations of the Kaup–Kupershmidt and Sawada–Kotera equations, constructed using the Zakharov–Manakov ¯-dressing method. We present subclasses of multisoliton and periodic solutions of these equations and give examples of linear superpositions of exact solutions of the Nizhnik–Veselov–Novikov equation.
Keywords: Nizhnik–Veselov–Novikov equation, two-dimensional Kaup–Kupershmidt equation, two-dimensional Sawada–Kotera equation, solutions with functional parameters, two-dimensional stationary Schrödinger equation, soliton, transparent potential.
Received: 23.06.2011
English version:
Theoretical and Mathematical Physics, 2011, Volume 167, Issue 3, Pages 725–739
DOI: https://doi.org/10.1007/s11232-011-0057-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. G. Dubrovsky, A. V. Topovsky, M. Yu. Basalaev, “New exact solutions of two-dimensional integrable equations using the ¯-dressing method”, TMF, 167:3 (2011), 377–393; Theoret. and Math. Phys., 167:3 (2011), 725–739
Citation in format AMSBIB
\Bibitem{DubTopBas11}
\by V.~G.~Dubrovsky, A.~V.~Topovsky, M.~Yu.~Basalaev
\paper New exact solutions of two-dimensional integrable equations using the~$\bar\partial$-dressing method
\jour TMF
\yr 2011
\vol 167
\issue 3
\pages 377--393
\mathnet{http://mi.mathnet.ru/tmf6648}
\crossref{https://doi.org/10.4213/tmf6648}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3166379}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...167..725D}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 167
\issue 3
\pages 725--739
\crossref{https://doi.org/10.1007/s11232-011-0057-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293653700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79960104639}
Linking options:
  • https://www.mathnet.ru/eng/tmf6648
  • https://doi.org/10.4213/tmf6648
  • https://www.mathnet.ru/eng/tmf/v167/i3/p377
  • This publication is cited in the following 11 articles:
    1. Chenyang Yao, Junyi Zhu, Xueru Wang, “Relative voltage and current for the self-dual network equation characterized by Dbar data”, Physics Letters A, 499 (2024), 129359  crossref
    2. Chanyuan Wang, Raghda A. M. Attia, Suleman H. Alfalqi, Jameel F. Alzaidi, Mostafa M. A. Khater, “Stability analysis and conserved quantities of analytic nonlinear wave solutions in multi-dimensional fractional systems”, Mod. Phys. Lett. B, 2024  crossref
    3. Mostafa M.A. Khater, “Pfaffian solutions and nonlinear dynamics of surface waves in two horizontal and one vertical directions with dispersion, dissipation and nonlinearity effects”, Alexandria Engineering Journal, 108 (2024), 232  crossref
    4. Yadi Xu, Junyi Zhu, “A new coupled differential–difference KP type system”, Chaos, Solitons & Fractals, 167 (2023), 113107  crossref
    5. Tengfei Liu, “A 2+1 dimensional Volterra type system with nonzero boundary conditions via Dbar dressing method”, Nonlinear Dyn, 111:1 (2023), 671  crossref
    6. Chang J.-H., “The interactions of solitons in the Novikov–Veselov equation”, Appl. Anal., 95:6 (2016), 1370–1388  crossref  mathscinet  zmath  isi  elib  scopus
    7. Adem A.R., Lu X., “Travelling wave solutions of a two-dimensional generalized Sawada–Kotera equation”, Nonlinear Dyn., 84:2 (2016), 915–922  crossref  mathscinet  zmath  isi  elib  scopus
    8. V. G. Dubrovsky, A. V. Topovsky, M. Yu. Basalaev, “Solutions with Functional Parameters of 2+1-Dimensional Integrable Nonlinear Equations. Two Dimensional Integrable Generalization of the Kaup–Kupershmidt Equation”, Russ Phys J, 58:7 (2015), 930  crossref
    9. Dubrovsky V.G., Topovsky A.V., “About Linear Superpositions of Special Exact Solutions of Nizhnik-Veselov-Novikov Equation”, Physics and Mathematics of Nonlinear Phenomena 2013, Journal of Physics Conference Series, 482, IOP Publishing Ltd, 2014, 012011  crossref  mathscinet  isi  scopus
    10. Dubrovsky V.G., Topovsky A.V., “About Simple Nonlinear and Linear Superpositions of Special Exact Solutions of Veselov-Novikov Equation”, J. Math. Phys., 54:3 (2013), 033509  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    11. Adem A.R., Khalique Ch.M., “Exact Solutions and Conservation Laws of a Two-Dimensional Integrable Generalization of the Kaup-Kupershmidt Equation”, J. Appl. Math., 2013, 647313  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:682
    Full-text PDF :241
    References:111
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025